Fractality of largest clusters and the percolation transition in power-law diluted chains

被引:4
|
作者
Albuquerque, SS [1 ]
de Moura, FABF
Lyra, ML
de Souza, AJF
机构
[1] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Fed Rural Pernambuco, Dept Fis & Matemat, BR-52171030 Recife, PE, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.016116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Relying on the fractal character of the largest clusters at criticality, we employ a finite-size scaling analysis to obtain an accurate phase-diagram of the percolation transition in chains with bond concentration decaying as a power-law on the form 1/r(1+sigma). For the particular case of sigma=1, no percolation transition is observed to occur at a finite dilution, in contrast with the finite temperature Kosterlitz-Thouless transition exhibited in Ising and Potts chains with inverse square-law couplings. The fractal dimension of the critical percolation cluster is found to follow distinct dependencies on the decay exponent being numerically fitted by d(f)=0.35+4 sigma/5 for 0 <sigma < 1/2 and d(f)=(1+sigma)/2 for 1/2 <sigma < 1. We also compute average mass ratios of the two largest clusters at criticality.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Percolation of three-dimensional fracture networks with power-law size distribution
    Mourzenko, VV
    Thovert, JF
    Adler, PM
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [22] POWER-LAW RELAXATION OF SPATIALLY DISORDERED STOCHASTIC CELLULAR AUTOMATA AND DIRECTED PERCOLATION
    NOEST, AJ
    PHYSICAL REVIEW B, 1988, 38 (04): : 2715 - 2720
  • [23] Impulse propagation in dissipative and disordered chains with power-law repulsive potentials
    Manciu, M
    Sen, S
    Hurd, AJ
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 157 (03) : 226 - 240
  • [24] Optimal Frobenius light cone in spin chains with power-law interactions
    Chen, Chi-Fang
    Lucas, Andrew
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [25] DRAG ON CHAINS AND AGGLOMERATES OF SPHERES IN VISCOUS NEWTONIAN AND POWER-LAW FLUIDS
    CHHABRA, RP
    SINGH, T
    NANDRAJOG, S
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 73 (04): : 566 - 571
  • [26] The transition from the power-law to the power-law breakdown regimes in thermal creep of Zr1%Nb cladding alloys
    Sklenicka, V
    Kucharova, K.
    Kvapilova, M.
    Kral, P.
    Dvorak, J.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2021, 59 (05): : 279 - 289
  • [27] Power-law Decay and the Ergodic–Nonergodic Transition in Simple Fluids
    Paul Spyridis
    Gene F. Mazenko
    Journal of Statistical Physics, 2014, 154 : 1030 - 1056
  • [28] Power-law exponent in the transition period of decay in grid turbulence
    Djenidi, L.
    Kamruzzaman, Md.
    Antonia, R. A.
    JOURNAL OF FLUID MECHANICS, 2015, 779 : 544 - 555
  • [29] Disorder-driven transition in a chain with power-law hopping
    Gaerttner, M.
    Syzranov, S. V.
    Rey, A. M.
    Gurarie, V.
    Radzihovsky, L.
    PHYSICAL REVIEW B, 2015, 92 (04)
  • [30] Phase transition and critical phenomenon in the power-law model of traffic
    Nagatani, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 248 (3-4) : 353 - 364