Shock-driven transition to turbulence: Emergence of power-law scaling

被引:7
|
作者
Olmstead, D. [1 ]
Wayne, P. [1 ]
Simons, D. [1 ]
Monje, I. Trueba [1 ]
Yoo, J. H. [1 ]
Kumar, S. [2 ]
Truman, C. R. [1 ]
Vorobieff, P. [1 ]
机构
[1] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[2] Indian Inst Technol Kanpur, Kanpur 208016, Uttar Pradesh, India
来源
PHYSICAL REVIEW FLUIDS | 2017年 / 2卷 / 05期
关键词
RICHTMYER-MESHKOV INSTABILITY; MIXING TRANSITION; GAS-CURTAIN; SPECTRA; FLUID;
D O I
10.1103/PhysRevFluids.2.052601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. The statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity maps of fluorescent tracer premixed with heavy gas. At later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time tau defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0-30 degrees).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Transition to turbulence in shock-driven mixing: a Mach number study
    Lombardini, M.
    Pullin, D. I.
    Meiron, D. I.
    JOURNAL OF FLUID MECHANICS, 2012, 690 : 203 - 226
  • [2] The driving mode of shock-driven turbulence
    Dhawalikar, Saee
    Federrath, Christoph
    Davidovits, Seth
    Teyssier, Romain
    Nagel, Sabrina R.
    Remington, Bruce A.
    Collins, David C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (02) : 1782 - 1800
  • [3] Shock-driven gas curtain: fractal dimension evolution in transition to turbulence
    Vorobieff, P
    Rightley, PM
    Benjamin, RF
    PHYSICA D, 1999, 133 (1-4): : 469 - 476
  • [4] Shock-driven gas curtain: Fractal dimension evolution in transition to turbulence
    Vorobieff, Peter
    Rightley, Paul M.
    Benjamin, Robert F.
    Physica D: Nonlinear Phenomena, 1999, 133 (1-4): : 469 - 476
  • [5] The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions
    Mohaghar, Mohammad
    Carter, John
    Pathikonda, Gokul
    Ranjan, Devesh
    JOURNAL OF FLUID MECHANICS, 2019, 871 : 595 - 635
  • [6] Evidence of shock-driven turbulence in the solar chromosphere
    Reardon, K. P.
    Lepreti, F.
    Carbone, V.
    Vecchio, A.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 683 (02) : L207 - L210
  • [7] Event-Driven Power-Law Relaxation in Weak Turbulence
    Silvestri, Ludovico
    Fronzoni, Leone
    Grigolini, Paolo
    Allegrini, Paolo
    PHYSICAL REVIEW LETTERS, 2009, 102 (01)
  • [8] Strong reconnection electric fields in shock-driven turbulence
    Bessho, N.
    Chen, L. -J.
    Stawarz, J. E.
    Wang, S.
    Hesse, M.
    Wilson, L. B., III
    Ng, J.
    PHYSICS OF PLASMAS, 2022, 29 (04)
  • [9] Air-chemistry "turbulence": power-law scaling and statistical regularity
    Hsu, H-m
    Lin, C-Y
    Guenther, A.
    Tribbia, J. J.
    Liu, S. C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (16) : 8395 - 8413
  • [10] Power-law exponent in the transition period of decay in grid turbulence
    Djenidi, L.
    Kamruzzaman, Md.
    Antonia, R. A.
    JOURNAL OF FLUID MECHANICS, 2015, 779 : 544 - 555