Human Activity Recognition Based on Transfer Learning with Spatio-Temporal Representations

被引:4
|
作者
Zebhi, Saeedeh [1 ]
Almodarresi, S. M. T. [1 ]
Abootalebi, Vahid [1 ]
机构
[1] Yazd Univ, Elect Engn Dept, Yazd, Iran
关键词
Deep learning; tuning; VGG-16; action recognition; LSTM;
D O I
10.34028/iajit/18/6/11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Gait History Image (GHI) is a spatial template that accumulates regions of motion into a single image in which moving pixels are brighter than others. A new descriptor named Time-Sliced Averaged Gradient Boundary Magnitude (TAGBM) is also designed to show the time variations of motion. The spatial and temporal information of each video can be condensed using these templates. Based on this opinion, a new method is proposed in this paper. Each video is split into N and M groups of consecutive frames, and the GHI and TAGBM are computed for each group, resulting spatial and temporal templates. Transfer learning with the fine-tuning technique has been used for classifying these templates. This proposed method achieves the recognition accuracies of 96.50%, 92.30% and 97.12% for KTH, UCF Sport and UCF-11 action datasets, respectively. Also it is compared with state-of-the-art approaches and the results show that the proposed method has the best performance.
引用
收藏
页码:839 / 845
页数:7
相关论文
共 50 条
  • [21] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)
  • [22] Transform based spatio-temporal descriptors for human action recognition
    Shao, Ling
    Gao, Ruoyun
    Liu, Yan
    Zhang, Hui
    NEUROCOMPUTING, 2011, 74 (06) : 962 - 973
  • [23] Spatio-Temporal Context Kernel for Activity Recognition
    Yuan, Fei
    Sahbi, Hichem
    Prinet, Veronique
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 436 - 440
  • [24] Efficient human activity recognition with spatio-temporal spiking neural networks
    Li, Yuhang
    Yin, Ruokai
    Kim, Youngeun
    Panda, Priyadarshini
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [25] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [26] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    EURASIP Journal on Image and Video Processing, 2016
  • [27] Deep Learning Based Video Spatio-Temporal Modeling for Emotion Recognition
    Fonnegra, Ruben D.
    Diaz, Gloria M.
    HUMAN-COMPUTER INTERACTION: THEORIES, METHODS, AND HUMAN ISSUES, HCI INTERNATIONAL 2018, PT I, 2018, 10901 : 397 - 408
  • [28] Learning Spatio-Temporal Representations With a Dual-Stream 3-D Residual Network for Nondriving Activity Recognition
    Yang, Lichao
    Shan, Xiaocai
    Lv, Chen
    Brighton, James
    Zhao, Yifan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (07) : 7405 - 7414
  • [29] A novel pedal musculoskeletal response based on differential spatio-temporal LSTM for human activity recognition
    Wu, Hao
    Zhang, Zhichao
    Li, Xiaoyong
    Shang, Kai
    Han, Yongming
    Geng, Zhiqiang
    Pan, Tingrui
    KNOWLEDGE-BASED SYSTEMS, 2023, 261
  • [30] Spatio-temporal attention mechanisms based model for collective activity recognition
    Lu, Lihua
    Di, Huijun
    Lu, Yao
    Zhang, Lin
    Wang, Shunzhou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 74 : 162 - 174