Human Activity Recognition Based on Transfer Learning with Spatio-Temporal Representations

被引:4
|
作者
Zebhi, Saeedeh [1 ]
Almodarresi, S. M. T. [1 ]
Abootalebi, Vahid [1 ]
机构
[1] Yazd Univ, Elect Engn Dept, Yazd, Iran
关键词
Deep learning; tuning; VGG-16; action recognition; LSTM;
D O I
10.34028/iajit/18/6/11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Gait History Image (GHI) is a spatial template that accumulates regions of motion into a single image in which moving pixels are brighter than others. A new descriptor named Time-Sliced Averaged Gradient Boundary Magnitude (TAGBM) is also designed to show the time variations of motion. The spatial and temporal information of each video can be condensed using these templates. Based on this opinion, a new method is proposed in this paper. Each video is split into N and M groups of consecutive frames, and the GHI and TAGBM are computed for each group, resulting spatial and temporal templates. Transfer learning with the fine-tuning technique has been used for classifying these templates. This proposed method achieves the recognition accuracies of 96.50%, 92.30% and 97.12% for KTH, UCF Sport and UCF-11 action datasets, respectively. Also it is compared with state-of-the-art approaches and the results show that the proposed method has the best performance.
引用
收藏
页码:839 / 845
页数:7
相关论文
共 50 条
  • [31] Collective Activity Recognition by Attribute-Based Spatio-Temporal Descriptor
    Chen, Changhong
    Dou, Hehe
    Gan, Zongliang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (10): : 1875 - 1878
  • [32] Learning Complex Spatio-Temporal Configurations of Body Joints for Online Activity Recognition
    Qi, Jin
    Wang, Zhangjing
    Lin, Xiancheng
    Li, Chunming
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2018, 48 (06) : 637 - 647
  • [33] Learning Action-guided Spatio-temporal Transformer for Group Activity Recognition
    Li, Wei
    Yang, Tianzhao
    Wu, Xiao
    Du, Xian-Jun
    Qiao, Jian-Jun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2051 - 2060
  • [34] Study of human action recognition based on improved spatio-temporal features
    Ji X.-F.
    Wu Q.-Q.
    Ju Z.-J.
    Wang Y.-Y.
    International Journal of Automation and Computing, 2014, 11 (05) : 500 - 509
  • [35] A fast human action recognition network based on spatio-temporal features
    Xu, Jie
    Song, Rui
    Wei, Haoliang
    Guo, Jinhong
    Zhou, Yifei
    Huang, Xiwei
    NEUROCOMPUTING, 2021, 441 : 350 - 358
  • [36] A Spatio-Temporal Deep Learning Approach For Human Action Recognition in Infrared Videos
    Shah, Anuj K.
    Ghosh, Ripul
    Akula, Aparna
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [37] Study of Human Action Recognition Based on Improved Spatio-temporal Features
    XiaoFei Ji
    QianQian Wu
    ZhaoJie Ju
    YangYang Wang
    International Journal of Automation & Computing, 2014, 11 (05) : 500 - 509
  • [38] Study of Human Action Recognition Based on Improved Spatio-temporal Features
    Xiao-Fei Ji
    Qian-Qian Wu
    Zhao-Jie Ju
    Yang-Yang Wang
    International Journal of Automation and Computing, 2014, (05) : 500 - 509
  • [39] Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks
    Wang, Lei
    Xu, Yangyang
    Cheng, Jun
    Xia, Haiying
    Yin, Jianqin
    Wu, Jiaji
    IEEE ACCESS, 2018, 6 : 17913 - 17922
  • [40] A fast human action recognition network based on spatio-temporal features
    Xu, Jie
    Song, Rui
    Wei, Haoliang
    Guo, Jinhong
    Zhou, Yifei
    Huang, Xiwei
    Neurocomputing, 2021, 441 : 350 - 358