Transform based spatio-temporal descriptors for human action recognition

被引:31
|
作者
Shao, Ling [1 ]
Gao, Ruoyun [2 ]
Liu, Yan [3 ]
Zhang, Hui [4 ,5 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
[2] Leiden Univ, Dept Comp Sci, NL-2300 RA Leiden, Netherlands
[3] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[4] United Int Coll, Dept Comp Sci & Technol, Zhuhai, Peoples R China
[5] PKU HKUST Shenzhen Hong Kong Inst, Shenzhen Key Lab Intelligent Media & Speech, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Transforms; Feature representation; Human action recognition; Spatio-temporal features; Feature extraction;
D O I
10.1016/j.neucom.2010.11.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classic transformation methods have been widely and efficiently used in image processing areas, such as image de-noising, image segmentation, feature detection, and compression. Based on their compact signal and image representation ability, we apply the transform based techniques on the video recognition area to extract discriminative information from each given video sequence, and use the transformed coefficients as descriptors for representing and recognizing human actions in video sequences. We validate our proposed methods on the KTH and the Hollywood datasets, which have been extensively studied by a lot of researchers. The proposed descriptors, especially the wavelet transform based descriptor, yield promising results on action recognition. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:962 / 973
页数:12
相关论文
共 50 条
  • [1] Robust human action recognition based on spatio-temporal descriptors and motion temporal templates
    Dou, Jianfang
    Li, Jianxun
    [J]. OPTIK, 2014, 125 (07): : 1891 - 1896
  • [2] Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition
    Sanin, Andres
    Sanderson, Conrad
    Harandi, Mehrtash T.
    Lovell, Brian C.
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 103 - 110
  • [3] Human Action Recognition Based on Spatio-temporal Features
    Sawant, Nikhil
    Biswas, K. K.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 357 - 362
  • [4] Projection transform on spatio-temporal context for action recognition
    Wanru Xu
    Zhenjiang Miao
    Qiang Zhang
    [J]. Multimedia Tools and Applications, 2015, 74 : 7711 - 7728
  • [5] Projection transform on spatio-temporal context for action recognition
    Xu, Wanru
    Miao, Zhenjiang
    Zhang, Qiang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (18) : 7711 - 7728
  • [6] Local descriptors for spatio-temporal recognition
    Laptev, Ivan
    Lindeberg, Tony
    [J]. SPATIAL COHERENCE FOR VISUAL MOTION ANALYSIS, 2006, 3667 : 91 - 103
  • [7] LEARNED SPATIO-TEMPORAL TEXTURE DESCRIPTORS FOR RGB-D HUMAN ACTION RECOGNITION
    Zhai, Zhengyuan
    Fan, Chunxiao
    Ming, Yue
    [J]. COMPUTING AND INFORMATICS, 2018, 37 (06) : 1339 - 1362
  • [8] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)
  • [9] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [10] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    [J]. EURASIP Journal on Image and Video Processing, 2016