LEARNED SPATIO-TEMPORAL TEXTURE DESCRIPTORS FOR RGB-D HUMAN ACTION RECOGNITION

被引:1
|
作者
Zhai, Zhengyuan [1 ]
Fan, Chunxiao [1 ]
Ming, Yue [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing Key Lab Work Safety Intelligent Monitorin, Xitucheng Rd 10, Beijing 100876, Peoples R China
关键词
3D pixel differences vectors; compact binary face descriptor; feature fusion; human action recognition; RGB-depth videos; ENSEMBLE; FEATURES;
D O I
10.4149/cai_2018_6_1339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the recent arrival of Kinect, action recognition with depth images has attracted researchers' wide attentions and various descriptors have been proposed, where Local Binary Patterns (LBP) texture descriptors possess the properties of appearance invariance. However, the LBP and its variants are most artificially-designed, demanding engineers' strong prior knowledge and not discriminative enough for recognition tasks. To this end, this paper develops compact spatio-temporal texture descriptors, i.e. 3D-compact LBP(3D-CLBP) and local depth patterns (3D-CLDP), for color and depth videos in the light of compact binary face descriptor learning in face recognition. Extensive experiments performed on three standard datasets, 3D Online Action, MSR Action Pairs and MSR Daily Activity 3D, demonstrate that our method is superior to most comparative methods in respects of performance and can capture spatial-temporal texture cues in videos.
引用
收藏
页码:1339 / 1362
页数:24
相关论文
共 50 条
  • [1] Spatio-temporal feature extraction and representation for RGB-D human action recognition
    Luo, Jiajia
    Wang, Wei
    Qi, Hairong
    [J]. PATTERN RECOGNITION LETTERS, 2014, 50 : 139 - 148
  • [2] An Effective Fusion Scheme of Spatio-Temporal Features for Human Action Recognition in RGB-D Video
    Tran, Quang D.
    Ly, Ngoc Q.
    [J]. 2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2013,
  • [3] Online view-invariant human action recognition using rgb-d spatio-temporal matrix
    Hsu, Yen-Pin
    Liu, Chengyin
    Chen, Tzu-Yang
    Fu, Li-Chen
    [J]. PATTERN RECOGNITION, 2016, 60 : 215 - 226
  • [4] A Robust Approach for Action Recognition Based on Spatio-Temporal Features in RGB-D Sequences
    Ly Quoc Ngoc
    Vo Hoai Viet
    Tran Thai Son
    Pham Minh Hoang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (05) : 166 - 177
  • [5] Multi-stage Factorized Spatio-Temporal Representation for RGB-D Action and Gesture Recognition
    Ma, Yujun
    Zhou, Benjia
    Wang, Ruili
    Wang, Pichao
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3149 - 3160
  • [6] Transform based spatio-temporal descriptors for human action recognition
    Shao, Ling
    Gao, Ruoyun
    Liu, Yan
    Zhang, Hui
    [J]. NEUROCOMPUTING, 2011, 74 (06) : 962 - 973
  • [7] Unsupervised Learning Spatio-temporal Features for Human Activity Recognition from RGB-D Video Data
    Chen, Guang
    Zhang, Feihu
    Giuliani, Manuel
    Buckl, Christian
    Knoll, Alois
    [J]. SOCIAL ROBOTICS, ICSR 2013, 2013, 8239 : 341 - 350
  • [8] Action Recognition from RGB-D Data: Comparison and fusion of spatio-temporal handcrafted features and deep strategies
    Asadi-Aghbolaghi, Maryam
    Bertiche, Hugo
    Roig, Vicent
    Kasaei, Shohreh
    Escalera, Sergio
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 3179 - 3188
  • [9] Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition
    Sanin, Andres
    Sanderson, Conrad
    Harandi, Mehrtash T.
    Lovell, Brian C.
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 103 - 110
  • [10] Robust human action recognition based on spatio-temporal descriptors and motion temporal templates
    Dou, Jianfang
    Li, Jianxun
    [J]. OPTIK, 2014, 125 (07): : 1891 - 1896