LEARNED SPATIO-TEMPORAL TEXTURE DESCRIPTORS FOR RGB-D HUMAN ACTION RECOGNITION

被引:1
|
作者
Zhai, Zhengyuan [1 ]
Fan, Chunxiao [1 ]
Ming, Yue [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing Key Lab Work Safety Intelligent Monitorin, Xitucheng Rd 10, Beijing 100876, Peoples R China
关键词
3D pixel differences vectors; compact binary face descriptor; feature fusion; human action recognition; RGB-depth videos; ENSEMBLE; FEATURES;
D O I
10.4149/cai_2018_6_1339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the recent arrival of Kinect, action recognition with depth images has attracted researchers' wide attentions and various descriptors have been proposed, where Local Binary Patterns (LBP) texture descriptors possess the properties of appearance invariance. However, the LBP and its variants are most artificially-designed, demanding engineers' strong prior knowledge and not discriminative enough for recognition tasks. To this end, this paper develops compact spatio-temporal texture descriptors, i.e. 3D-compact LBP(3D-CLBP) and local depth patterns (3D-CLDP), for color and depth videos in the light of compact binary face descriptor learning in face recognition. Extensive experiments performed on three standard datasets, 3D Online Action, MSR Action Pairs and MSR Daily Activity 3D, demonstrate that our method is superior to most comparative methods in respects of performance and can capture spatial-temporal texture cues in videos.
引用
收藏
页码:1339 / 1362
页数:24
相关论文
共 50 条
  • [41] Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos
    Duta, Ionut C.
    Ionescu, Bogdan
    Aizawa, Kiyoharu
    Sebe, Nicu
    [J]. MULTIMEDIA MODELING (MMM 2017), PT I, 2017, 10132 : 365 - 378
  • [42] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [43] Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1748 - 1762
  • [44] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)
  • [45] Spatio-Temporal Information Fusion and Filtration for Human Action Recognition
    Zhang, Man
    Li, Xing
    Wu, Qianhan
    [J]. SYMMETRY-BASEL, 2023, 15 (12):
  • [46] Bag of Spatio-temporal Synonym Sets for Human Action Recognition
    Pang, Lin
    Cao, Juan
    Guo, Junbo
    Lin, Shouxun
    Song, Yan
    [J]. ADVANCES IN MULTIMEDIA MODELING, PROCEEDINGS, 2010, 5916 : 422 - 432
  • [47] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Qianhan Wu
    Qian Huang
    Xing Li
    [J]. Multimedia Tools and Applications, 2023, 82 : 16409 - 16430
  • [48] SPATIO-TEMPORAL PYRAMIDAL ACCORDION REPRESENTATION FOR HUMAN ACTION RECOGNITION
    Sekma, Manel
    Mejdoub, Mahmoud
    Ben Amar, Chokri
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [49] Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition
    Liu, Jun
    Shahroudy, Amir
    Xu, Dong
    Wang, Gang
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 816 - 833
  • [50] HUMAN ACTION CLASSIFICATION USING SURF BASED SPATIO-TEMPORAL CORRELATED DESCRIPTORS
    Sabri, A. Q. Md
    Boonaert, J.
    Lecoeuche, S.
    Mouaddib, E.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1401 - 1404