Spatio-Temporal Information Fusion and Filtration for Human Action Recognition

被引:1
|
作者
Zhang, Man [1 ,2 ,3 ]
Li, Xing [1 ,2 ]
Wu, Qianhan [4 ]
机构
[1] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coll Artificial Intelligence, Nanjing 210037, Peoples R China
[3] Univ Birmingham, Coll Social Sci, Birmingham B15 2TT, England
[4] Hohai Univ, Sch Comp & Informat, Nanjing 211100, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 12期
关键词
human-centred computer vision; human action recognition; depth video sequence; human resource management; NETWORK; MOTION; MODELS; 2D;
D O I
10.3390/sym15122177
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human action recognition (HAR) as the most representative human-centred computer vision task is critical in human resource management (HRM), especially in human resource recruitment, performance appraisal, and employee training. Currently, prevailing approaches to human action recognition primarily emphasize either temporal or spatial features while overlooking the intricate interplay between these two dimensions. This oversight leads to less precise and robust action classification within complex human resource recruitment environments. In this paper, we propose a novel human action recognition methodology for human resource recruitment environments, which aims at symmetrically harnessing temporal and spatial information to enhance the performance of human action recognition. Specifically, we compute Depth Motion Maps (DMM) and Depth Temporal Maps (DTM) from depth video sequences as space and time descriptors, respectively. Subsequently, a novel feature fusion technique named Center Boundary Collaborative Canonical Correlation Analysis (CBCCCA) is designed to enhance the fusion of space and time features by collaboratively learning the center and boundary information of feature class space. We then introduce a spatio-temporal information filtration module to remove redundant information introduced by spatio-temporal fusion and retain discriminative details. Finally, a Support Vector Machine (SVM) is employed for human action recognition. Extensive experiments demonstrate that the proposed method has the ability to significantly improve human action recognition performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [2] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    EURASIP Journal on Image and Video Processing, 2016
  • [3] Spatio-Temporal Fusion Networks for Action Recognition
    Cho, Sangwoo
    Foroosh, Hassan
    COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 347 - 364
  • [4] Spatio-temporal Multi-level Fusion for Human Action Recognition
    Manh-Hung Lu
    Thi-Oanh Nguyen
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 298 - 305
  • [5] Human Action Recognition in Video by Fusion of Structural and Spatio-temporal Features
    Borzeshi, Ehsan Zare
    Concha, Oscar Perez
    Piccardi, Massimo
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 474 - 482
  • [6] Spatio-Temporal Fusion for Human Action Recognition via Joint Trajectory Graph
    Zheng, Yaolin
    Huang, Hongbo
    Wang, Xiuying
    Yan, Xiaoxu
    Xu, Longfei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7579 - 7587
  • [7] Spatio-temporal Video Autoencoder for Human Action Recognition
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 114 - 123
  • [8] Spatio-Temporal Steerable Pyramid for Human Action Recognition
    Zhen, Xiantong
    Shao, Ling
    2013 10TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), 2013,
  • [9] Spatio-temporal Semantic Features for Human Action Recognition
    Liu, Jia
    Wang, Xiaonian
    Li, Tianyu
    Yang, Jie
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (10): : 2632 - 2649
  • [10] Human Action Recognition Using Spatio-temporal Classification
    Fang, Chin-Hsien
    Chen, Ju-Chin
    Tseng, Chien-Chung
    Lien, Jenn-Jier James
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 98 - 109