Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition

被引:860
|
作者
Liu, Jun [1 ]
Shahroudy, Amir [1 ]
Xu, Dong [2 ]
Wang, Gang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW, Australia
来源
关键词
3D action recognition; Recurrent neural networks; Long short-term memory; Trust gate; Spatio-temporal analysis; SEQUENCE;
D O I
10.1007/978-3-319-46487-9_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D action recognition - analysis of human actions based on 3D skeleton data - becomes popular recently due to its succinctness, robustness, and view-invariant representation. Recent attempts on this problem suggested to develop RNN-based learning methods to model the contextual dependency in the temporal domain. In this paper, we extend this idea to spatio-temporal domains to analyze the hidden sources of action-related information within the input data over both domains concurrently. Inspired by the graphical structure of the human skeleton, we further propose a more powerful tree-structure based traversal method. To handle the noise and occlusion in 3D skeleton data, we introduce new gating mechanism within LSTM to learn the reliability of the sequential input data and accordingly adjust its effect on updating the long-term context information stored in the memory cell. Our method achieves state-of-the-art performance on 4 challenging benchmark datasets for 3D human action analysis.
引用
下载
收藏
页码:816 / 833
页数:18
相关论文
共 50 条
  • [1] Skeleton-Based Action Recognition Using Spatio-Temporal LSTM Network with Trust Gates
    Liu, Jun
    Shahroudy, Amir
    Xu, Dong
    Kot, Alex C.
    Wang, Gang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (12) : 3007 - 3021
  • [2] Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection
    Song, Sijie
    Lan, Cuiling
    Xing, Junliang
    Zeng, Wenjun
    Liu, Jiaying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) : 3459 - 3471
  • [3] 3D human action recognition using spatio-temporal motion templates
    Lv, FJ
    Nevatia, R
    Lee, MW
    COMPUTER VISION IN HUMAN-COMPUTER INTERACTION, PROCEEDINGS, 2005, 3766 : 120 - 130
  • [4] Spatio-temporal attention on manifold space for 3D human action recognition
    Ding, Chongyang
    Liu, Kai
    Cheng, Fei
    Belyaev, Evgeny
    APPLIED INTELLIGENCE, 2021, 51 (01) : 560 - 570
  • [5] Spatio-temporal attention on manifold space for 3D human action recognition
    Chongyang Ding
    Kai Liu
    Fei Cheng
    Evgeny Belyaev
    Applied Intelligence, 2021, 51 : 560 - 570
  • [6] Augmenting Spatio-Temporal Human Motion Data for Effective 3D Action Recognition
    Sedmidubsky, Jan
    Zezula, Pavel
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, : 204 - 207
  • [7] Spatio-temporal deformable 3D ConvNets with attention for action recognition
    Li, Jun
    Liu, Xianglong
    Zhang, Mingyuan
    Wang, Deqing
    PATTERN RECOGNITION, 2020, 98 (98)
  • [8] Discriminative Spatio-Temporal Pattern Discovery for 3D Action Recognition
    Weng, Junwu
    Weng, Chaoqun
    Yuan, Junsong
    Liu, Zicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1077 - 1089
  • [9] Global Spatio-Temporal Attention for Action Recognition Based on 3D Human Skeleton Data
    Han, Yun
    Chung, Sheng-Luen
    Xiao, Qiang
    Lin, Wei You
    Su, Shun-Feng
    IEEE ACCESS, 2020, 8 : 88604 - 88616
  • [10] Spatio-Temporal Features in Action Recognition Using 3D Skeletal Joints
    Trascau, Mihai
    Nan, Mihai
    Florea, Adina Magda
    SENSORS, 2019, 19 (02)