Partial ovoids and partial spreads in hermitian polar spaces

被引:12
|
作者
De Beule, J. [1 ]
Klein, A. [1 ]
Metsch, K. [2 ]
Storme, L. [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
[2] Univ Giessen, Inst Math, D-35392 Giessen, Germany
关键词
hermitian variety; polar space; partial ovoid; partial spread;
D O I
10.1007/s10623-007-9047-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present improved lower bounds on the sizes of small maximal partial ovoids in the classical hermitian polar spaces, and improved upper bounds on the sizes of large maximal partial spreads in the classical hermitian polar spaces. Of particular importance is the presented upper bound on the size of a maximal partial spread of H(3,q(2)). For q = 2,3, the presented upper bound is sharp. For q = 3, our results confirm via theoretical arguments properties, deduced by computer searches performed by Ebert and Hirschfeld, for the largest partial spreads of H(3,9). An overview of the status regarding these results is given in two summarizing tables. The similar results for the classical symplectic and orthogonal polar spaces are presented in De Beule et al. [8].
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [1] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    [J]. Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [2] Partial ovoids and partial spreads in symplectic and orthogonal polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1280 - 1297
  • [3] On large partial ovoids of symplectic and Hermitian polar spaces
    Ceria, Michela
    De Beule, Jan
    Pavese, Francesco
    Smaldore, Valentino
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (01) : 5 - 22
  • [4] Maximal partial ovoids and maximal partial spreads in hermitian generalized quadrangles
    Metsch, K.
    Storme, L.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (02) : 101 - 116
  • [5] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    [J]. Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [6] Partial ovoids in classical finite polar spaces
    Klein, A
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 221 - 226
  • [7] Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces
    Gow, Rod
    Lavrauw, Michel
    Sheekey, John
    Vanhove, Frederic
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [8] Maximal partial spreads of polar spaces
    Cossidente, Antonio
    Pavese, Francesco
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [9] On partial ovoids of Hermitian surfaces
    Aguglia, A.
    Ebert, G. L.
    Luyckx, D.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 641 - 650
  • [10] On Transitive Ovoids of Finite Hermitian Polar Spaces
    Tao Feng
    Weicong Li
    [J]. Combinatorica, 2021, 41 : 645 - 667