Maximal partial ovoids and maximal partial spreads in hermitian generalized quadrangles

被引:5
|
作者
Metsch, K. [1 ]
Storme, L. [2 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
Generalized quadrangle; Hermitian variety; Ovoid; Spread;
D O I
10.1002/jcd.20146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximal partial ovoids and maximal partial spreads of the hermitian generalized quadrangles H(3, q(2)) and H(4, q(2)) are studied in great detail. We present improved lower bounds on the size of maximal partial ovoids and maximal partial spreads in the hermitian quadrangle H(4, q(2)). We also construct in H(3, q(2)), q = 2(2h+1), h >= 1, maximal partial spreads of size smaller than the size q(2) + 1 presently known. As a final result, we present a discrete spectrum result for the deficiencies of maximal partial spreads of H(4, q(2)) of small positive deficiency S. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 50 条
  • [1] Searching for maximal partial ovoids and spreads in generalized quadrangles
    Cimrakova, Miroslava
    Fack, Veerle
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 697 - 705
  • [2] On the smallest maximal partial ovoids and spreads of the generalized quadrangles W(q) and Q(4, q)
    Cimrakova, M.
    De Winter, S.
    Facka, V.
    Storme, L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (07) : 1934 - 1942
  • [3] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [4] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34
  • [5] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    G. Marino
    O. Polverino
    Designs, Codes and Cryptography, 2010, 56 : 115 - 130
  • [6] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    Marino, G.
    Polverino, O.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 115 - 130
  • [7] SPREADS AND OVOIDS IN FINITE GENERALIZED QUADRANGLES
    THAS, JA
    PAYNE, SE
    GEOMETRIAE DEDICATA, 1994, 52 (03) : 227 - 253
  • [8] On maximal symplectic partial spreads
    Kantor, William M.
    ADVANCES IN GEOMETRY, 2017, 17 (04) : 453 - 471
  • [9] MAXIMAL STRICTLY PARTIAL SPREADS
    EBERT, GL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (03): : 483 - 489
  • [10] Maximal Partial Spreads and Flocks
    Johnson N.L.
    Lunardon G.
    Designs, Codes and Cryptography, 1997, 10 (2) : 193 - 202