Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties

被引:1
|
作者
Marino, G. [1 ]
Polverino, O. [1 ]
机构
[1] Seconda Univ Napoli, Dip Matemat, I-81100 Caserta, Italy
关键词
Spread; Blocking set; Hermitian variety; Ovoid; Q(N));
D O I
10.1007/s10623-010-9390-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In Mazzocca et al. (Des. Codes Cryptogr. 44:97-113, 2007), large minimal blocking sets in PG(3, q (2)) and PG(4, q (2)) have been constructed starting from ovoids of PG(3, q), Q(4, q) and Q(6, q). Some of these can be embedded in a Hermitian variety as maximal partial ovoids. In this paper, the geometric conditions assuring these embeddings are established.
引用
收藏
页码:115 / 130
页数:16
相关论文
共 37 条
  • [1] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    G. Marino
    O. Polverino
    Designs, Codes and Cryptography, 2010, 56 : 115 - 130
  • [2] Maximal partial ovoids and maximal partial spreads in hermitian generalized quadrangles
    Metsch, K.
    Storme, L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (02) : 101 - 116
  • [3] On partial ovoids of Hermitian surfaces
    Aguglia, A.
    Ebert, G. L.
    Luyckx, D.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 641 - 650
  • [4] Shult sets and translation ovoids of the Hermitian surface
    Cossidente, A.
    Ebert, G. L.
    Marino, G.
    Siciliano, Alessandro
    ADVANCES IN GEOMETRY, 2006, 6 (04) : 523 - 542
  • [5] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34
  • [6] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [7] Blocking Structures of Hermitian Varieties
    Klaus Metsch
    Designs, Codes and Cryptography, 2005, 34 : 339 - 360
  • [8] Blocking structures of hermitian varieties
    Metsch, K
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 34 (2-3) : 339 - 360
  • [9] On large partial ovoids of symplectic and Hermitian polar spaces
    Ceria, Michela
    De Beule, Jan
    Pavese, Francesco
    Smaldore, Valentino
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (01) : 5 - 22
  • [10] Caps on Hermitian varieties and maximal curves
    Hirschfeld, JWP
    Korchindros, G
    ADVANCES IN GEOMETRY, 2003, : S206 - S214