Partial ovoids and partial spreads in symplectic and orthogonal polar spaces

被引:4
|
作者
De Beule, J. [1 ]
Klein, A. [1 ]
Metsch, K. [2 ]
Storme, L. [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
[2] Univ Giessen, Math Inst, D-35392 Giessen, Germany
关键词
D O I
10.1016/j.ejc.2007.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present improved lower bounds on the sizes of small maximal partial ovoids and small maximal partial spreads in the classical symplectic and orthogonal polar spaces, and improved upper bounds on the sizes of large maximal partial ovoids and large maximal partial spreads in the classical symplectic and orthogonal polar spaces. An overview of the status regarding these results is given in tables. The similar results for the hermitian classical polar spaces are presented in [J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads in hermitian polar spaces, Des. Codes Cryptogr. (in press)]. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1280 / 1297
页数:18
相关论文
共 50 条
  • [1] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    [J]. Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [2] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34
  • [3] On large partial ovoids of symplectic and Hermitian polar spaces
    Ceria, Michela
    De Beule, Jan
    Pavese, Francesco
    Smaldore, Valentino
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (01) : 5 - 22
  • [4] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    [J]. Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [5] Partial ovoids in classical finite polar spaces
    Klein, A
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 221 - 226
  • [6] Maximal partial spreads of polar spaces
    Cossidente, Antonio
    Pavese, Francesco
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [7] Translation ovoids of orthogonal polar spaces
    Lunardon, G
    Polverino, O
    [J]. FORUM MATHEMATICUM, 2004, 16 (05) : 663 - 669
  • [8] On m-ovoids of symplectic polar spaces
    Feng, Tao
    Wang, Ye
    Xiang, Qing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [9] On maximal symplectic partial spreads
    Kantor, William M.
    [J]. ADVANCES IN GEOMETRY, 2017, 17 (04) : 453 - 471
  • [10] Spreads of PG(3, q) and ovoids of polar spaces
    Bader, Laura
    Marino, Giuseppe
    Polverino, Olga
    Trombetti, Rocco
    [J]. FORUM MATHEMATICUM, 2007, 19 (06) : 1101 - 1110