Partial ovoids and partial spreads in symplectic and orthogonal polar spaces

被引:4
|
作者
De Beule, J. [1 ]
Klein, A. [1 ]
Metsch, K. [2 ]
Storme, L. [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
[2] Univ Giessen, Math Inst, D-35392 Giessen, Germany
关键词
D O I
10.1016/j.ejc.2007.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present improved lower bounds on the sizes of small maximal partial ovoids and small maximal partial spreads in the classical symplectic and orthogonal polar spaces, and improved upper bounds on the sizes of large maximal partial ovoids and large maximal partial spreads in the classical symplectic and orthogonal polar spaces. An overview of the status regarding these results is given in tables. The similar results for the hermitian classical polar spaces are presented in [J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads in hermitian polar spaces, Des. Codes Cryptogr. (in press)]. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1280 / 1297
页数:18
相关论文
共 50 条
  • [31] ON TRANSITIVE OVOIDS OF FINITE HERMITIAN POLAR SPACES
    Feng, Tao
    Li, Weicong
    [J]. COMBINATORICA, 2021, 41 (05) : 645 - 667
  • [32] Desarguesian and Unitary complete partial ovoids
    Valentina Pepe
    [J]. Journal of Algebraic Combinatorics, 2013, 37 : 503 - 522
  • [33] Desarguesian and Unitary complete partial ovoids
    Pepe, Valentina
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (03) : 503 - 522
  • [34] On linear partial spreads
    Pavan, Andrea
    Zanella, Corrado
    [J]. DISCRETE MATHEMATICS, 2012, 312 (03) : 578 - 583
  • [35] Spreads of nonsingular pairs in symplectic vector spaces
    Weintraub, Steven H.
    [J]. JOURNAL OF GEOMETRY, 2007, 86 (1-2) : 165 - 180
  • [36] On Orthogonal Partial b-Metric Spaces with an Application
    Javed, Khalil
    Aydi, Hassen
    Uddin, Fahim
    Arshad, Muhammad
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [37] Characterizations of symplectic polar spaces
    Cardinali, Ilaria
    Cuypers, Hans
    Giuzzi, Luca
    Pasini, Antonio
    [J]. ADVANCES IN GEOMETRY, 2023, 23 (02) : 281 - 293
  • [38] A common generalization of hypercube partitions and ovoids in polar spaces
    D'haeseleer, Jozefien
    Ihringer, Ferdinand
    Schmidt, Kai-Uwe
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024,
  • [39] On orthogonal polar spaces
    Cardinali, Ilaria
    Giuzzi, Luca
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 493 - 518
  • [40] Orthogonal, symplectic and unitary polar spaces sub-weakly embedded in projective space
    Thas, JA
    VanMaldeghem, H
    [J]. COMPOSITIO MATHEMATICA, 1996, 103 (01) : 75 - 93