Partial ovoids in classical finite polar spaces

被引:6
|
作者
Klein, A [1 ]
机构
[1] Univ Kassel, Fachbereich Math & Informat, Kassel, Germany
关键词
partial ovoids; polar spaces;
D O I
10.1023/B:DESI.0000015885.23333.ca
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ovoids in finite polar spaces are related to many other objects in finite geometries. In this article, we prove some new upper bounds for the size of partial ovoids in Q(-)(2n + 1; q) and W(2n + 1; q). Further, we give a combinatorial proof for the non-existence of ovoids of H(2n + 1; q(2)) for n > q(3).
引用
收藏
页码:221 / 226
页数:6
相关论文
共 50 条
  • [1] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    [J]. Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [2] Partial ovoids and partial spreads in hermitian polar spaces
    J. De Beule
    A. Klein
    K. Metsch
    L. Storme
    [J]. Designs, Codes and Cryptography, 2008, 47 : 21 - 34
  • [3] Partial ovoids and partial spreads in hermitian polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 21 - 34
  • [4] On Transitive Ovoids of Finite Hermitian Polar Spaces
    Tao Feng
    Weicong Li
    [J]. Combinatorica, 2021, 41 : 645 - 667
  • [5] ON TRANSITIVE OVOIDS OF FINITE HERMITIAN POLAR SPACES
    Feng, Tao
    Li, Weicong
    [J]. COMBINATORICA, 2021, 41 (05) : 645 - 667
  • [6] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Tao Feng
    Weicong Li
    Ran Tao
    [J]. Science China Mathematics, 2024, 67 (03) : 683 - 712
  • [7] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Tao Feng
    Weicong Li
    Ran Tao
    [J]. Science China Mathematics, 2024, 67 : 683 - 712
  • [8] Partial ovoids and partial spreads in symplectic and orthogonal polar spaces
    De Beule, J.
    Klein, A.
    Metsch, K.
    Storme, L.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1280 - 1297
  • [9] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Feng, Tao
    Li, Weicong
    Tao, Ran
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) : 683 - 712
  • [10] On large partial ovoids of symplectic and Hermitian polar spaces
    Ceria, Michela
    De Beule, Jan
    Pavese, Francesco
    Smaldore, Valentino
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (01) : 5 - 22