On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group

被引:0
|
作者
Feng, Tao [1 ]
Li, Weicong [2 ,3 ]
Tao, Ran [4 ,5 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Peoples R China
[4] Shandong Univ, Key Lab Cryptol Technol & Informat Secur, Minist Educ, Qingdao 266237, Peoples R China
[5] Shandong Univ, Sch Cyber Sci & Technol, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
transitive m-ovoids; irreducible action; finite classical polar spaces; primitive divisor; MAXIMAL-SUBGROUPS; INTRIGUING SETS; TIGHT SETS; REE GROUPS; M-SYSTEMS;
D O I
10.1007/s11425-021-2060-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.
引用
收藏
页码:683 / 712
页数:30
相关论文
共 50 条
  • [1] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Tao Feng
    Weicong Li
    Ran Tao
    [J]. Science China Mathematics, 2024, 67 : 683 - 712
  • [2] On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
    Tao Feng
    Weicong Li
    Ran Tao
    [J]. Science China Mathematics, 2024, 67 (03) : 683 - 712
  • [3] Tight sets and m-ovoids of finite polar spaces
    Bamberg, John
    Kelly, Shane
    Law, Maska
    Penttila, Tim
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (07) : 1293 - 1314
  • [4] On m-ovoids of symplectic polar spaces
    Feng, Tao
    Wang, Ye
    Xiang, Qing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [5] Some non-existence results on m-ovoids in classical polar spaces
    De Beule, Jan
    Mannaert, Jonathan
    Smaldore, Valentino
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [6] On Transitive Ovoids of Finite Hermitian Polar Spaces
    Tao Feng
    Weicong Li
    [J]. Combinatorica, 2021, 41 : 645 - 667
  • [7] ON TRANSITIVE OVOIDS OF FINITE HERMITIAN POLAR SPACES
    Feng, Tao
    Li, Weicong
    [J]. COMBINATORICA, 2021, 41 (05) : 645 - 667
  • [8] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    [J]. Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [9] Partial ovoids in classical finite polar spaces
    Klein, A
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 221 - 226
  • [10] A characterization of m-ovoids and i-tight sets of polar spaces
    De Bruyn, Bart
    [J]. ADVANCES IN GEOMETRY, 2008, 8 (03) : 367 - 375