Sharp estimates for maximal operators associated to the wave equation

被引:18
|
作者
Rogers, Keith M. [1 ]
Villarroya, Paco [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
来源
ARKIV FOR MATEMATIK | 2008年 / 46卷 / 01期
关键词
D O I
10.1007/s11512-007-0063-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The wave equation, partial derivative(tt)u=Delta u, in Rn+1, considered with initial data u(x, 0)= f is an element of H-s(R-n) and u'(x, 0)=0, has a solution which we denote by 1/2 (e(it root-Delta) f+e(-it root-Delta) f). We give almost sharp conditions under which sup(0<t<1)\e(+/-it root-Delta) f\ and sup(t is an element of R)\e(+/-it root-Delta) f\ are bounded from H-s (R-n) to L-q(R-n).
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条