Sharp estimates for maximal operators associated to the wave equation

被引:18
|
作者
Rogers, Keith M. [1 ]
Villarroya, Paco [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
来源
ARKIV FOR MATEMATIK | 2008年 / 46卷 / 01期
关键词
D O I
10.1007/s11512-007-0063-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The wave equation, partial derivative(tt)u=Delta u, in Rn+1, considered with initial data u(x, 0)= f is an element of H-s(R-n) and u'(x, 0)=0, has a solution which we denote by 1/2 (e(it root-Delta) f+e(-it root-Delta) f). We give almost sharp conditions under which sup(0<t<1)\e(+/-it root-Delta) f\ and sup(t is an element of R)\e(+/-it root-Delta) f\ are bounded from H-s (R-n) to L-q(R-n).
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [41] Sharp Inequalities for Maximal Operators on Finite Graphs
    Cristian González-Riquelme
    José Madrid
    [J]. The Journal of Geometric Analysis, 2021, 31 : 9708 - 9744
  • [42] Sharp weighted inequalities for harmonic maximal operators
    Osekowski, Adam
    Rapicki, Mateusz
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 140 - 153
  • [43] Sharp Inequalities for Maximal Operators on Finite Graphs
    Gonzalez-Riquelme, Cristian
    Madrid, Jose
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9708 - 9744
  • [44] Sharp Strichartz type estimates for the Schrodinger equation associated with harmonic oscillator
    Senapati, P. Jitendra Kumar
    Boggarapu, Pradeep
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (03): : 2085 - 2096
  • [45] Sharp regularity estimates for solutions of the wave equation and their traces with prescribed Neumann data
    Avalos, G
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 35 (02): : 203 - 219
  • [46] Sharp regularity estimates for solutions of the wave equation and their traces with prescribed neumann data
    G. Avalos
    [J]. Applied Mathematics and Optimization, 1997, 35 : 203 - 219
  • [47] Sharp Null Form Estimates for the Wave Equation in R3+1
    Lee, Sanghyuk
    Rogers, Keith M.
    Vargas, Ana
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [48] Sharp Weighted Estimates for Square Functions Associated to Operators on Spaces of Homogeneous Type
    The Anh Bui
    Xuan Thinh Duong
    [J]. The Journal of Geometric Analysis, 2020, 30 : 874 - 900
  • [49] Sharp Estimates for Potential Operators Associated with Laguerre and Dunkl-Laguerre Expansions
    Adam Nowak
    Krzysztof Stempak
    [J]. Potential Analysis, 2016, 44 : 109 - 136
  • [50] Sharp endpoint estimates for some operators associated with the Laplacian with drift in Euclidean space
    Li, Hong-Quan
    Sjogren, Peter
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1278 - 1304