Sharp weak-type estimates for maximal operators associated to rare bases

被引:0
|
作者
Hagelstein, Paul [1 ,4 ]
Oniani, Giorgi [2 ]
Stokolos, Alex [3 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX USA
[2] Kutaisi Int Univ, Sch Comp Sci & Math, Kutaisi, Georgia
[3] Georgia Southern Univ, Dept Math Sci, Statesboro, GA USA
[4] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
DIFFERENTIATION;
D O I
10.1112/blms.12816
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B denote a nonempty translation invariant collection of intervals in R-n (which we regard as a rare basis), and define the associated geometric maximal operator M-B byM(B)f(x) = sup (x is an element of R is an element of B) 1 / |R| integral(R) |f|We provide a sufficient condition on B so that the estimate|{x is an element of R-n : M(B)f (x) > alpha}| <= C-n integral(Rn) |f | / alpha (1 + log(+) |f | / alpha) (n-1)is sharp. As a corollary, we obtain sharp weak-type esti-mates for maximal operators associated to several classes of rare bases including unions of one-parameter infinite families of Cordoba, Soria, and Zygmund-type bases.
引用
收藏
页码:1749 / 1759
页数:11
相关论文
共 50 条
  • [1] SHARP WEAK-TYPE ESTIMATES FOR THE DYADIC-LIKE MAXIMAL OPERATORS
    Osekowski, Adam
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1031 - 1050
  • [2] BEST CONSTANTS IN THE WEAK-TYPE ESTIMATES FOR UNCENTERED MAXIMAL OPERATORS
    Osekowski, Adam
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (03) : 655 - 663
  • [3] ESTIMATES FOR WEAK-TYPE OPERATORS
    BENNETT, C
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05): : 933 - 935
  • [4] Weak-type estimates for martingale maximal functions
    Osekowski, Adam
    Wojtas, Mateusz
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [5] WEAK-TYPE INTERPOLATION FOR NONCOMMUTATIVE MAXIMAL OPERATORS
    Dirksen, Sjoerd
    [J]. JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 515 - 532
  • [6] A note on the limiting weak-type behavior for maximal operators
    Hu, Jiaxin
    Huang, Xueping
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1599 - 1607
  • [7] The limiting weak-type behaviors of the strong maximal operators
    Qin, Moyan
    Wu, Huoxiong
    Xue, Qingying
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (04)
  • [8] The limiting weak-type behaviors of the strong maximal operators
    Moyan Qin
    Huoxiong Wu
    Qingying Xue
    [J]. Banach Journal of Mathematical Analysis, 2021, 15
  • [9] On the Limiting Weak-type Behaviors for Maximal Operators Associated with Power Weighted Measure
    Hou, Xianming
    Wu, Huoxiong
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 313 - 326
  • [10] Extremizers and sharp weak-type estimates for positive dyadic shifts
    Rey, Guillermo
    Reznikov, Alexander
    [J]. ADVANCES IN MATHEMATICS, 2014, 254 : 664 - 681