Weighted Estimates for a Class of Global Maximal Operators Associated with Dispersive Equation

被引:0
|
作者
Yong Ding
Yao-ming Niu
机构
[1] Ministry of Education,School of Mathematical Sciences, Beijing Normal University; Laboratory of Mathematics and Complex Systems (BNU)
[2] Baotou Teachers’ College of Inner Mongolia University of Science and Technology,Faculty of Mathematics
关键词
global maximal operator; weighted estimate; pseudo-differential operator; dispersive equation; 42B20; 42B25; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
For a function ϕ satisfying some suitable growth conditions, consider the following general dispersive equation defined by {i∂tu+ϕ(−Δ)u=0,(x,t)∈ℝn×ℝ,u(x,0)=f(x),f∈S(ℝn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{i{\partial _t}u + \phi (\sqrt { - \Delta } )u = 0,} \hfill & {(x,t) \in {\mathbb{R}^n} \times \mathbb{R},} \hfill \cr {u(x,0) = f(x),} \hfill & {f \in {\cal S}({\mathbb{R}^n}),} \hfill \cr } } \right.$$\end{document} where ϕ(−Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (\sqrt { - \Delta } )$$\end{document} is a pseudo-differential operator with symbol ϕ(∣ξ∣). In the present paper, when the initial data f belongs to Sobolev space, we give the local and global weighted Lq estimate for the global maximal operator Sϕ∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\phi ^{ \ast \ast }$$\end{document} defined by Sϕ∗∗f(x)=supt∈ℝ|St,ϕf(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\phi ^{ \ast \ast }f(x) = \mathop {\sup }\limits_{t \in \mathbb{R}} \left| {{S_{t,\phi }}f(x)} \right|$$\end{document}, where St,ϕf(x)=(2π)−n∫ℝneix⋅ξ+itϕ(|ξ|)f^(ξ)dξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{t,\phi }}f(x) = {(2\pi )^{ - n}}\int_{{\mathbb{R}^n}} {{e^{ix \cdot \xi + it\phi (\left| \xi \right|)}}\hat f(\xi )d\xi } $$\end{document} is a formal solution of the equation (*).
引用
收藏
页码:187 / 208
页数:21
相关论文
共 50 条
  • [1] Weighted Estimates for a Class of Global Maximal Operators Associated with Dispersive Equation
    Yong DING
    Yao-ming NIU
    [J]. Acta Mathematicae Applicatae Sinica, 2022, 38 (01) : 187 - 208
  • [2] Weighted Estimates for a Class of Global Maximal Operators Associated with Dispersive Equation
    Ding, Yong
    Niu, Yao-ming
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 187 - 208
  • [3] Global L2 estimates for a class of maximal operators associated to general dispersive equations
    Ding, Yong
    Niu, Yaoming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [4] Weighted L2 estimates for maximal operators associated to dispersive equations
    Cho, YG
    Shim, YS
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1081 - 1092
  • [5] Weighted maximal estimates along curve associated with dispersive equations
    Ding, Yong
    Niu, Yaoming
    [J]. ANALYSIS AND APPLICATIONS, 2017, 15 (02) : 225 - 240
  • [6] Sharp estimates for maximal operators associated to the wave equation
    Rogers, Keith M.
    Villarroya, Paco
    [J]. ARKIV FOR MATEMATIK, 2008, 46 (01): : 143 - 151
  • [7] Weighted estimates for a class of sublinear operators
    D. V. Prokhorov
    V. D. Stepanov
    [J]. Doklady Mathematics, 2013, 88 : 721 - 723
  • [8] WEIGHTED ESTIMATES FOR A CLASS OF MATRIX OPERATORS
    Zhangabergenova, Nazerke
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03): : 627 - 644
  • [9] Weighted estimates for a class of sublinear operators
    Prokhorov, D. V.
    Stepanov, V. D.
    [J]. DOKLADY MATHEMATICS, 2013, 88 (03) : 721 - 723
  • [10] Weighted estimates of a measure of noncompactness for maximal and potential operators
    Asif, Muhammad
    Meskhi, Alexander
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)