Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding

被引:61
|
作者
Lyzinski, Vince [1 ]
Sussman, Daniel L. [2 ]
Minh Tang [3 ]
Athreya, Avanti [3 ]
Priebe, Carey E. [3 ]
机构
[1] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Baltimore, MD 21211 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
来源
关键词
Clustering; stochastic block model; degree corrected stochastic block model; VERTEX CLASSIFICATION; CONSISTENCY;
D O I
10.1214/14-EJS978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degree-corrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph model.
引用
收藏
页码:2905 / 2922
页数:18
相关论文
共 50 条
  • [21] Multi-view clustering via spectral embedding fusion
    Yin, Hongwei
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    SOFT COMPUTING, 2019, 23 (01) : 343 - 356
  • [22] Multi-view clustering via spectral embedding fusion
    Hongwei Yin
    Fanzhang Li
    Li Zhang
    Zhao Zhang
    Soft Computing, 2019, 23 : 343 - 356
  • [23] Model-based clustering in simple hypergraphs through a stochastic blockmodel
    Brusa, Luca
    Matias, Catherine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (04) : 1661 - 1684
  • [24] Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices
    Athreya, Avanti
    Cape, Joshua
    Tang, Minh
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 84 (01): : 36 - 63
  • [25] Double adjacency graphs-based discriminant neighborhood embedding
    Ding, Chuntao
    Zhang, Li
    PATTERN RECOGNITION, 2015, 48 (05) : 1734 - 1742
  • [26] Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices
    Avanti Athreya
    Joshua Cape
    Minh Tang
    Sankhya A, 2022, 84 (1): : 36 - 63
  • [27] Spectral clustering of graphs
    Luo, B
    Wilson, RC
    Hancock, ER
    GRAPH BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2003, 2726 : 190 - 201
  • [28] Spectral clustering of graphs
    Luo, B
    Wilson, RC
    Hancock, ER
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 540 - 548
  • [29] Weighted Spectral Embedding of Graphs
    Bonald, Thomas
    Hollocou, Alexandre
    Lelarge, Marc
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 494 - 501
  • [30] Spectral Embedding of Weighted Graphs
    Gallagher, Ian
    Jones, Andrew
    Bertiger, Anna
    Priebe, Carey E.
    Rubin-Delanchy, Patrick
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 1923 - 1932