Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding

被引:61
|
作者
Lyzinski, Vince [1 ]
Sussman, Daniel L. [2 ]
Minh Tang [3 ]
Athreya, Avanti [3 ]
Priebe, Carey E. [3 ]
机构
[1] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Baltimore, MD 21211 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
来源
关键词
Clustering; stochastic block model; degree corrected stochastic block model; VERTEX CLASSIFICATION; CONSISTENCY;
D O I
10.1214/14-EJS978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degree-corrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph model.
引用
收藏
页码:2905 / 2922
页数:18
相关论文
共 50 条
  • [31] SPECTRAL MULTIPLICITY FUNCTIONS OF ADJACENCY OPERATORS OF GRAPHS AND COSPECTRAL INFINITE GRAPHS
    de la Harpe, Pierre
    arXiv, 2023,
  • [32] Spectral multiplicity functions of adjacency operators of graphs and cospectral infinite graphs
    de la Harpe, Pierre
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (01): : 44 - 84
  • [33] Restructuring Graphs for Higher Homophily via Adaptive Spectral Clustering
    Li, Shouheng
    Kim, Dongwoo
    Wang, Qing
    arXiv, 2022,
  • [34] Vertex Nomination Between Graphs via Spectral Embedding and Quadratic Programming
    Zheng, Runbing
    Lyzinski, Vince
    Priebe, Carey E.
    Minh Tang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (04) : 1254 - 1268
  • [35] Restructuring Graphs for Higher Homophily via Adaptive Spectral Clustering
    Li, Shouheng
    Kim, Dongwoo
    Wang, Qing
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 8622 - 8630
  • [36] Restructuring Graphs for Higher Homophily via Adaptive Spectral Clustering
    School of Computing, Australian National University, Canberra, Australia
    不详
    不详
    Proc. AAAI Conf. Artif. Intell., AAAI, (8622-8630): : 8622 - 8630
  • [37] Spectral Clustering of Signed Graphs via Matrix Power Means
    Mercado, Pedro
    Tudisco, Francesco
    Hein, Matthias
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [38] Multi-view spectral clustering via constrained nonnegative embedding
    El Hajjar, S.
    Dornaika, F.
    Abdallah, F.
    INFORMATION FUSION, 2022, 78 : 209 - 217
  • [39] Embedding via clustering: Using spectral information to guide dimensionality reduction
    Memisevic, R
    Hinton, G
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 3198 - 3203
  • [40] Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs
    Hamidouche, Mounia
    Cottatellucci, Laura
    Avrachenkov, Konstantin
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 208 - 214