Multi-view clustering via spectral embedding fusion

被引:8
|
作者
Yin, Hongwei [1 ]
Li, Fanzhang [2 ]
Zhang, Li [1 ,2 ]
Zhang, Zhao [1 ]
机构
[1] Soochow Univ, Coll Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Joint Int Res Lab Machine Learning & Neuromorph C, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Spectral clustering; Structure information; Spectral embedding fusion;
D O I
10.1007/s00500-018-3184-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view learning, such as multi-view feature learning and multi-view clustering, has a wide range of applications in machine learning and pattern recognition. Most previous studies employ the multiple data information from various views to improve the performance of learning. The key problem is to integrate the symbiotic part of the different views or datasets. In practical clustering task, the symbiotic part includes two levels: global structure information and local structure information. However, traditional multi-view clustering methods usually ignore the energy of the local structure information. This paper proposes a novel multi-view clustering model to solve this problem, which simultaneously integrates the global structure information and local structure information of all the views. By integrating the fusion of global spectral embedding and the fusion of spectral manifold embedding from multi-view data, we construct an objective function to find the final fusional embedding and give an iteration method to solve it by using the L2,1 norm. Finally, the K-means clustering method is applied to the obtained final fusional embedding. Extensive experimental results on several real multi-view data sets demonstrate the superior performance of our model.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [1] Multi-view clustering via spectral embedding fusion
    Hongwei Yin
    Fanzhang Li
    Li Zhang
    Zhao Zhang
    [J]. Soft Computing, 2019, 23 : 343 - 356
  • [2] Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding
    Hu, Zhanxuan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. INFORMATION FUSION, 2020, 55 : 251 - 259
  • [3] Multi-view clustering via adversarial view embedding and adaptive view fusion
    Li, Yongzhen
    Liao, Husheng
    [J]. APPLIED INTELLIGENCE, 2021, 51 (03) : 1201 - 1212
  • [4] Multi-view spectral clustering via constrained nonnegative embedding
    El Hajjar, S.
    Dornaika, F.
    Abdallah, F.
    [J]. INFORMATION FUSION, 2022, 78 : 209 - 217
  • [5] Multi-view clustering via adversarial view embedding and adaptive view fusion
    Yongzhen Li
    Husheng Liao
    [J]. Applied Intelligence, 2021, 51 : 1201 - 1212
  • [6] Multi-view Graph Clustering via Efficient Global-Local Spectral Embedding Fusion
    Wang, Penglei
    Wu, Danyang
    Wang, Rong
    Nie, Feiping
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3268 - 3276
  • [7] Binary multi-view clustering with spectral embedding
    Ma, Zeqi
    Wong, Wai Keung
    Zhang, Li-ying
    [J]. NEUROCOMPUTING, 2023, 557
  • [8] Auto-weighted multi-view clustering via spectral embedding
    Shi, Shaojun
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. NEUROCOMPUTING, 2020, 399 : 369 - 379
  • [9] Multi-view clustering by joint spectral embedding and spectral rotation
    Wan, Zhizhen
    Xu, Huiling
    Gao, Quanxue
    [J]. NEUROCOMPUTING, 2021, 462 : 123 - 131
  • [10] Multi-view clustering by joint spectral embedding and spectral rotation
    Wan, Zhizhen
    Xu, Huiling
    Gao, Quanxue
    [J]. Neurocomputing, 2021, 462 : 123 - 131