Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem

被引:0
|
作者
Bonnard, Bernard [1 ]
Cots, Olivier [2 ]
Shcherbakova, Nataliya [3 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
[2] INRIA Sophia Antipolis Mediterranee, F-06902 Sophia Antipolis, France
[3] Univ Toulouse, INPT, UPS, Lab Genie Chim, F-31432 Toulouse, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO (3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the EulerPoinsot problem via the Serret-Andoyer reduction. We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.
引用
收藏
页码:1804 / 1809
页数:6
相关论文
共 50 条