The generalized Euler-Poinsot rigid body equations: explicit elliptic solutions

被引:3
|
作者
Fedorov, Yuri N. [1 ]
Maciejewski, Andrzej J. [2 ]
Przybylska, Maria [3 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Zielona Gora, Kepler Inst Astron, PL-65407 Zielona Gora, Poland
[3] Univ Zielona Gora, Inst Phys, PL-65407 Zielona Gora, Poland
关键词
D O I
10.1088/1751-8113/46/41/415201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical Euler-Poinsot case of the rigid body dynamics admits a class of simple but non-trivial integrable generalizations, which modify the Poisson equations describing the motion of the body in space. These generalizations possess first integrals which are polynomial in the angular momenta. We consider the modified Poisson equations as a system of linear equations with elliptic coefficients and show that all the solutions of it are single-valued. By using the vector generalization of the Picard theorem, we derive the solutions explicitly in terms of sigma-functions of the corresponding elliptic curve. The solutions are accompanied by a numerical example. We also compare the generalized Poisson equations with the classical third order Halphen equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] THE SERRET-ANDOYER RIEMANNIAN METRIC AND EULER-POINSOT RIGID BODY MOTION
    Bonnard, Bernard
    Cots, Olivier
    Shcherbakova, Nataliya
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (03) : 287 - 302
  • [2] Analytical integration of a generalized Euler-Poinsot problem: Applications
    Molina, R
    Vigueras, A
    [J]. DYNAMICS, EPHEMERIDES AND ASTROMETRY OF THE SOLAR SYSTEM, 1996, (172): : 249 - 250
  • [3] Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem
    Bonnard, Bernard
    Cots, Olivier
    Shcherbakova, Nataliya
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1804 - 1809
  • [4] RIEMANNIAN METRICS ON 2D-MANIFOLDS RELATED TO THE EULER-POINSOT RIGID BODY MOTION
    Bonnard, Bernard
    Cots, Olivier
    Pomet, Jean-Baptiste
    Shcherbakova, Nataliya
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (03) : 864 - 893
  • [5] CONCISE FORM OF THE DYNAMIC AND KINEMATIC SOLUTIONS OF THE EULER-POINSOT PROBLEM
    Romano, Marcello
    [J]. FIRST IAA CONFERENCE ON DYNAMICS AND CONTROL OF SPACE SYSTEMS 2012, PTS I AND II, 2012, 145 : 55 - 68
  • [6] Sensitivity of the Euler-Poinsot Tensor Values to the Choice of the Body Surface Triangulation Mesh
    Burov, A. A.
    Nikonov, V., I
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (10) : 1708 - 1720
  • [7] Solutions of Euler's Dynamic Equations for the Motion of a Rigid Body
    Amer, T. S.
    Abady, I. M.
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2017, 30 (04)
  • [8] Solving the discrete Euler-Arnold equations for the generalized rigid body motion
    Cardoso, Joao R.
    Miraldo, Pedro
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [9] GENERALIZED EULER EQUATIONS FOR LINKED RIGID BODIES
    KNELLER, GR
    HINSEN, K
    [J]. PHYSICAL REVIEW E, 1994, 50 (02): : 1559 - 1564
  • [10] Application of Generalized Differential Euler-Gess Equations in Rigid Body and Gyrostat Dynamics
    Panov, A. P.
    [J]. 2015 IEEE 3RD INTERNATIONAL CONFERENCE ACTUAL PROBLEMS OF UNMANNED AERIAL VEHICLES DEVELOPMENTS (APUAVD), 2015, : 16 - 19