We prove that for any solution u locally defined in time of the Kelvin{Helmholtz problem for the Euler 2d equation in the plane, then the curve of discontinuity of u and the density of the vortex sheet are analytic (under holder a priori estimates for the curve of discontinuity). We also give a partial result for a solution u defined in a half interval [O; T[.
机构:
Georg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, GermanyGeorg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
机构:
TU Wien, Inst Anal & Sci Comp, A-1040 Vienna, AustriaGeorg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
Lederer, Philip L.
Lehrenfeld, Christoph
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, GermanyGeorg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
Lehrenfeld, Christoph
Lube, Gert
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, GermanyGeorg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
Lube, Gert
Schoeberl, Joachim
论文数: 0引用数: 0
h-index: 0
机构:
TU Wien, Inst Anal & Sci Comp, A-1040 Vienna, AustriaGeorg August Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany