On the weak solution of the Neumann problem for the 2D Helmholtz equation in a convex cone and Hs regularity

被引:12
|
作者
Merzon, A. E. [1 ]
Speck, F-O. [2 ]
Villalba-Vega, T. J. [1 ]
机构
[1] Univ Michoacana, Inst Fis & Matemat, Morelia 58090, Michoacan, Mexico
[2] Univ Tecn Lisboa, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Helmholtz equation; Neumann problem; 2D angle; Sobolev space;
D O I
10.1002/mma.1326
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend previous results for the Neumann boundary value problem to the case of boundary data from the space H-1/2+epsilon(Gamma), 0<epsilon<1/2, where Gamma = partial derivative Omega is the boundary of a two-dimensional cone Omega with angle beta<pi. We prove that for these boundary conditions the solution of the Helmholtz equation in Omega exists in the Sobolev space H1+epsilon(Omega), is unique and depends continuously on the boundary data. Moreover, we give the Sommerfeld representation for these solutions. This can be used to formulate explicit compatibility conditions on the data for regularity properties of the corresponding solution. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:24 / 43
页数:20
相关论文
共 50 条
  • [1] Regularity of the Kelvin-Helmholtz problem for the Euler 2D equation
    Lebeau, G
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 801 - 825
  • [2] Fourier Solution of the 2D Dirichlet Problem for the Helmholtz Equation
    Caratelli, D.
    Natalini, P.
    Ricci, P. E.
    [J]. PIERS 2009 MOSCOW VOLS I AND II, PROCEEDINGS, 2009, : 128 - +
  • [3] Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation
    Wei, T.
    Qin, H. H.
    Shi, R.
    [J]. INVERSE PROBLEMS, 2008, 24 (03)
  • [4] Monte Carlo solution of the Neumann problem for the nonlinear Helmholtz equation
    Rasulov, Abdujabar
    Raimova, Gulnora
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 117 : 1 - 9
  • [5] REGULARITY OF SOLUTION OF D-BAR-NEUMANN PROBLEM
    EGOROV, YV
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (05): : 12 - 21
  • [6] Fundamental Solutions of the 2D Neumann Problem for the Laplace Equation
    A. V. Setukha
    [J]. Differential Equations, 2003, 39 : 135 - 144
  • [7] Fundamental solutions of the 2D Neumann problem for the Laplace equation
    Setukha, AV
    [J]. DIFFERENTIAL EQUATIONS, 2003, 39 (01) : 135 - 144
  • [8] An optimization problem based on a Bayesian approach for the 2D Helmholtz equation
    Lili Guadarrama
    Carlos Prieto
    Elijah Van Houten
    [J]. Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 1097 - 1111
  • [9] OPTIMAL SHAPE PARAMETER FOR MESHLESS SOLUTION OF THE 2D HELMHOLTZ EQUATION
    Mauricio-A, Londono
    Hebert, Montegranario
    [J]. CT&F-CIENCIA TECNOLOGIA Y FUTURO, 2019, 9 (02): : 15 - 35
  • [10] An optimization problem based on a Bayesian approach for the 2D Helmholtz equation
    Guadarrama, Lili
    Prieto, Carlos
    Van Houten, Elijah
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 1097 - 1111