Smooth motion of a rigid body in 2D and 3D

被引:1
|
作者
Chaudhry, FS
Handscomb, DC
机构
关键词
motion; rotation; rigid body; smooth; rational splines;
D O I
10.1109/IV.1997.626517
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given measurements of the positions of a number of marked points on a rigid body at a sequence of times t(i), i = 0,1,...,n, we represent the motion of the body, assuming this motion to be smooth, by means of piecewise-rational curves, one through each sequence of positions, sharing a common denominator and having the property that the distance between these curves always remain constant. We consider in detail the motion in 2D and 3D of a rigid rod marked at each end.
引用
收藏
页码:205 / 210
页数:4
相关论文
共 50 条
  • [1] Learning non-rigid 3D shape from 2D motion
    Torresani, L
    Hertzmann, A
    Bregler, C
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1555 - 1562
  • [2] Rigid body motion in stereo 3D simulation
    Zabunov, Svetoslav
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (06) : 1345 - 1352
  • [3] Nonlinear Observer for 3D Rigid Body Motion
    Bras, Sergio
    Izadi, Maziar
    Silvestre, Carlos
    Sanyal, Amit
    Oliveira, Paulo
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2588 - 2593
  • [4] Interactive initialization of 2D/3D rigid registration
    Gong, Ren Hui
    Gueler, Oezguer
    Kuerklueoglu, Mustafa
    Lovejoy, John
    Yaniv, Ziv
    [J]. MEDICAL PHYSICS, 2013, 40 (12)
  • [5] 3D structure from 2D motion
    Jebara, T
    Azarbayejani, A
    Pentland, A
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1999, 16 (03) : 66 - 84
  • [6] Instabilities in smooth 2D and 3D isothermal flames
    Milton, RA
    Scott, SK
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (08) : 21 - 28
  • [7] RELATIVE EFFICIENCY OF 2D AND 3D MOTION JUDGMENTS
    CROWELL, JA
    BANKS, MS
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1993, 34 (04) : 1364 - 1364
  • [8] Collapsed fat navigators for brain 3D rigid body motion
    Engstrom, Mathias
    Martensson, Magnus
    Avventi, Enrico
    Norbeck, Ola
    Skare, Stefan
    [J]. MAGNETIC RESONANCE IMAGING, 2015, 33 (08) : 984 - 991
  • [9] Identification of the 3D vibratory motion of a rigid body by accelerometer measurements
    Di Puccio, F
    Forte, P
    [J]. SHOCK AND VIBRATION, 2004, 11 (3-4) : 281 - 293
  • [10] 2D and 3D nonrigid body registration in fMRI
    Singh, M
    AlDayeh, L
    Patel, P
    [J]. 1996 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1997, : 1474 - 1478