Fast Parallel Processing using GPU in computing L1-PCA bases

被引:11
|
作者
Funatsu, Nobuhiro [1 ]
Kuroki, Yoshimitsu [1 ]
机构
[1] Kurume Natl Coll Technol, Kurume, Fukuoka 8308555, Japan
关键词
RECOGNITION;
D O I
10.1109/TENCON.2010.5686614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In data-analysis problems with a large number of dimensions, the principal component analysis based on L2-norm ( L2-PCA) is one of the most popular methods, but L2-PCA is sensitive to outliers. Unlike L2-PCA, PCA-L1 is robust to outliers because it utilizes the L1-norm, which is less sensitive to outliers; therefore, some studies have shown the superiority of PCA-L1 to L2-PCA [2][3]. However, PCA-L1 requires enormous computational cost to obtain the bases, because PCA-L1 employs an iterative algorithm, and initial bases are eigenvectors of autocorrelation matrix. The autocorrelation matrix in the PCA-L1 needs to be recalculated for the each basis besides. In previous works [3], the authors proposed a fast PCA-L1 algorithm providing identical bases in terms of theoretical approach, and decreased computational time roughly to a quarter. This paper attempts to accelerate the computation of the L1-PCA bases using GPU.
引用
收藏
页码:2087 / 2090
页数:4
相关论文
共 50 条
  • [1] L1-PCA with Quantum Annealing
    Tomeo, Ian
    Markopoulos, Panagiotis
    Savakis, Andreas E.
    BIG DATA VI: LEARNING, ANALYTICS, AND APPLICATIONS, 2024, 13036
  • [2] A GAIT RECOGNITION METHOD USING L1-PCA AND LDA
    Su, Han
    Liao, Zhi-Wu
    Chen, Guo-Yue
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 3198 - +
  • [3] On the Link Between L1-PCA and ICA
    Martin-Clemente, Ruben
    Zarzoso, Vicente
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (03) : 515 - 528
  • [4] LDA via L1-PCA of Whitened Data
    Martin-Clemente, Ruben
    Zarzoso, Vicente
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 225 - 240
  • [5] 基于迹范数的L1-PCA算法
    刘丽敏
    樊晓平
    廖志芳
    计算机工程, 2013, 39 (04) : 199 - 202+209
  • [6] Compressed-Sensed-Domain L1-PCA Video Surveillance
    Liu, Ying
    Pados, Dimitris A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (03) : 351 - 363
  • [7] Compressed-sensed-domain L1-PCA Video Surveillance
    Liu, Yang
    Pados, Dimitris A.
    COMPRESSIVE SENSING IV, 2015, 9484
  • [8] The implementation of fast object recognition using parallel processing on CPU and GPU
    Kim, Jun-Chul
    Jung, Young-Han
    Park, Eun-Soo
    Cui, Xuenan
    Kim, Hak-Il
    Huh, Uk-Youl
    Journal of Institute of Control, Robotics and Systems, 2009, 15 (05) : 488 - 495
  • [9] INCREMENTAL COMPLEX L1-PCA FOR DIRECTION-OF-ARRIVAL ESTIMATION
    Dhanaraj, Mayur
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    2018 IEEE WESTERN NEW YORK IMAGE AND SIGNAL PROCESSING WORKSHOP (WNYISPW), 2018,
  • [10] Iteratively Re-weighted L1-PCA of Tensor Data
    Tountas, Konstantinos
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    Pados, Dimitris A.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1658 - 1661