Fast Parallel Processing using GPU in computing L1-PCA bases

被引:11
|
作者
Funatsu, Nobuhiro [1 ]
Kuroki, Yoshimitsu [1 ]
机构
[1] Kurume Natl Coll Technol, Kurume, Fukuoka 8308555, Japan
关键词
RECOGNITION;
D O I
10.1109/TENCON.2010.5686614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In data-analysis problems with a large number of dimensions, the principal component analysis based on L2-norm ( L2-PCA) is one of the most popular methods, but L2-PCA is sensitive to outliers. Unlike L2-PCA, PCA-L1 is robust to outliers because it utilizes the L1-norm, which is less sensitive to outliers; therefore, some studies have shown the superiority of PCA-L1 to L2-PCA [2][3]. However, PCA-L1 requires enormous computational cost to obtain the bases, because PCA-L1 employs an iterative algorithm, and initial bases are eigenvectors of autocorrelation matrix. The autocorrelation matrix in the PCA-L1 needs to be recalculated for the each basis besides. In previous works [3], the authors proposed a fast PCA-L1 algorithm providing identical bases in terms of theoretical approach, and decreased computational time roughly to a quarter. This paper attempts to accelerate the computation of the L1-PCA bases using GPU.
引用
收藏
页码:2087 / 2090
页数:4
相关论文
共 50 条
  • [31] Crystallography On-A-Chip: using GPU for fast scattering computing
    Favre-Nicolin, Vincent
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C142 - C142
  • [32] The GPU-based parallel processing algorithm for fast inspection of semiconductor wafers
    Park, Youngdae
    Kim, Joon Seek
    Joo, Hyonam
    Journal of Institute of Control, Robotics and Systems, 2013, 19 (12) : 1072 - 1080
  • [33] Fast parallel GPU-sorting using a hybrid algorithm
    Sintorn, Erik
    Assarsson, Ulf
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (10) : 1381 - 1388
  • [34] Hydrologic Terrain Processing Using Parallel Computing
    Wallace, Wallis C. R.
    Tarboton, D. G.
    Watson, D. W.
    Schreuders, K. A. T.
    Tesfa, T. K.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 2540 - 2545
  • [35] GPU Computing based fast discrete wavelet transform for l1-regularized SPIRiT reconstruction
    Yao, Tiechui
    Xiao, Li
    Zhao, Di
    Sun, Yuzhong
    IMAGING SCIENCE JOURNAL, 2018, 66 (07): : 393 - 408
  • [36] Fast distributed and parallel pre-processing on massive satellite data using grid computing
    Wongoo Lee
    Yunsoo Choi
    Kangryul Shon
    Jaesoo Kim
    Journal of Central South University, 2014, 21 : 3850 - 3855
  • [37] Optical diagnostics of a single evaporating droplet using fast parallel computing on graphics processing units
    Jakubczyk, D.
    Migacz, S.
    Derkachov, G.
    Wozniak, M.
    Archer, J.
    Kolwas, K.
    OPTO-ELECTRONICS REVIEW, 2016, 24 (03) : 108 - 116
  • [38] Fast distributed and parallel pre-processing on massive satellite data using grid computing
    Lee, Wongoo
    Choi, Yunsoo
    Shon, Kangryul
    Kim, Jaesoo
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (10) : 3850 - 3855
  • [39] Fast distributed and parallel pre-processing on massive satellite data using grid computing
    Wongoo Lee
    Yunsoo Choi
    Kangryul Shon
    Jaesoo Kim
    JournalofCentralSouthUniversity, 2014, 21 (10) : 3850 - 3855
  • [40] Parallel processing algorithm of JPEG2000 using GPU
    Lee, Dongha
    Cho, Shiwon
    Lee, Dong-Wook
    Transactions of the Korean Institute of Electrical Engineers, 2008, 57 (06): : 1075 - 1080