Fast Parallel Processing using GPU in computing L1-PCA bases

被引:11
|
作者
Funatsu, Nobuhiro [1 ]
Kuroki, Yoshimitsu [1 ]
机构
[1] Kurume Natl Coll Technol, Kurume, Fukuoka 8308555, Japan
关键词
RECOGNITION;
D O I
10.1109/TENCON.2010.5686614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In data-analysis problems with a large number of dimensions, the principal component analysis based on L2-norm ( L2-PCA) is one of the most popular methods, but L2-PCA is sensitive to outliers. Unlike L2-PCA, PCA-L1 is robust to outliers because it utilizes the L1-norm, which is less sensitive to outliers; therefore, some studies have shown the superiority of PCA-L1 to L2-PCA [2][3]. However, PCA-L1 requires enormous computational cost to obtain the bases, because PCA-L1 employs an iterative algorithm, and initial bases are eigenvectors of autocorrelation matrix. The autocorrelation matrix in the PCA-L1 needs to be recalculated for the each basis besides. In previous works [3], the authors proposed a fast PCA-L1 algorithm providing identical bases in terms of theoretical approach, and decreased computational time roughly to a quarter. This paper attempts to accelerate the computation of the L1-PCA bases using GPU.
引用
收藏
页码:2087 / 2090
页数:4
相关论文
共 50 条
  • [21] Deep L1-PCA of Time-Variant Data with Application to Brain Connectivity Measurements
    Orru, Giovanna
    Cattai, Tiziana
    Colonnese, Stefania
    Scarano, Gaetano
    Fallani, Fabrizio De Vico
    Markopoulos, Panos
    Pados, Dimitris
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [22] CLOUD-ASSISTED INDIVIDUAL L1-PCA FACE RECOGNITION USING WAVELET-DOMAIN COMPRESSED IMAGES
    Maritato, Federica
    Liu, Ying
    Colonnese, Stefania
    Pados, Dimitris A.
    PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2016,
  • [23] Fast Hamiltonian Monte Carlo Using GPU Computing
    Beam, Andrew L.
    Ghosh, Sujit K.
    Doyle, Jon
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (02) : 536 - 548
  • [24] Fast Parallel Markov Clustering in Bioinformatics Using Massively Parallel Computing on GPU with CUDA and ELLPACK-R Sparse Format
    Bustamam, Alhadi
    Burrage, Kevin
    Hamilton, Nicholas A.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 679 - 692
  • [25] Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing
    Liu, Qiang
    Qin, Yi
    Li, Guodong
    WATER, 2018, 10 (05):
  • [26] A fast bond-based peridynamic program based on GPU parallel computing
    Yang, Yang
    Su, Zixin
    Liu, Yijun
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2025, 172
  • [27] Parallel Skyline Processing Using Space Pruning on GPU
    Li, Chuanwen
    Gu, Yu
    Qi, Jianzhong
    Yu, Ge
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1074 - 1083
  • [28] L1-PCA Signal Subspace Identification for Non-sphered Data Under the ICA Model
    Martin-Clemente, Ruben
    Zarzoso, Vicente
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [29] Parallel computing methods for CFD using a GPU and implicit scheme
    Zhang, Bing
    Han, Jinglong
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2010, 31 (02): : 249 - 256
  • [30] FDTD Acceleration using MATLAB Parallel Computing Toolbox and GPU
    Diener, Joseph E.
    Elsherbeni, Atef Z.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2017, 32 (04): : 283 - 288