Compressed-sensed-domain L1-PCA Video Surveillance

被引:1
|
作者
Liu, Yang [1 ]
Pados, Dimitris A. [1 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
来源
COMPRESSIVE SENSING IV | 2015年 / 9484卷
关键词
Compressed sensing; convex optimization; feature extraction; L-1 principle component analysis; singular value decomposition; surveillance video; total-variation minimization; SIGNAL RECOVERY;
D O I
10.1117/12.2179722
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of foreground and background extraction from compressed-sensed (CS) surveillance video. We propose, for the first time in the literature, a principal component analysis (PCA) approach that computes the low-rank subspace of the background scene directly in the CS domain. Rather than computing the conventional L-2-norm-based principal components, which are simply the dominant left singular vectors of the CS measurement matrix, we compute the principal components under an L-1-norm maximization criterion. The background scene is then obtained by projecting the CS measurement vector onto the L-1 principal components followed by total-variation (TV) minimization image recovery. The proposed L-1-norm procedure directly carries out low-rank background representation without reconstructing the video sequence and, at the same time, exhibits significant robustness against outliers in CS measurements compared to L-2-norm PCA.
引用
收藏
页数:10
相关论文
共 37 条
  • [1] Compressed-Sensed-Domain L1-PCA Video Surveillance
    Liu, Ying
    Pados, Dimitris A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (03) : 351 - 363
  • [2] L1-PCA with Quantum Annealing
    Tomeo, Ian
    Markopoulos, Panagiotis
    Savakis, Andreas E.
    BIG DATA VI: LEARNING, ANALYTICS, AND APPLICATIONS, 2024, 13036
  • [3] CLOUD-ASSISTED INDIVIDUAL L1-PCA FACE RECOGNITION USING WAVELET-DOMAIN COMPRESSED IMAGES
    Maritato, Federica
    Liu, Ying
    Colonnese, Stefania
    Pados, Dimitris A.
    PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2016,
  • [4] On the Link Between L1-PCA and ICA
    Martin-Clemente, Ruben
    Zarzoso, Vicente
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (03) : 515 - 528
  • [5] A regularized tensor decomposition method with adaptive rank adjustment for Compressed-Sensed-Domain background subtraction
    Xia, Senlin
    Sun, Huaijiang
    Chen, Beijia
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 62 : 149 - 163
  • [6] LDA via L1-PCA of Whitened Data
    Martin-Clemente, Ruben
    Zarzoso, Vicente
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 225 - 240
  • [7] 基于迹范数的L1-PCA算法
    刘丽敏
    樊晓平
    廖志芳
    计算机工程, 2013, 39 (04) : 199 - 202+209
  • [8] A GAIT RECOGNITION METHOD USING L1-PCA AND LDA
    Su, Han
    Liao, Zhi-Wu
    Chen, Guo-Yue
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 3198 - +
  • [9] Surveillance video synopsis in the compressed domain for fast video browsing
    Wang, Shi-zheng
    Wang, Zhong-yuan
    Hu, Rui-min
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (08) : 1431 - 1442
  • [10] INCREMENTAL COMPLEX L1-PCA FOR DIRECTION-OF-ARRIVAL ESTIMATION
    Dhanaraj, Mayur
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    2018 IEEE WESTERN NEW YORK IMAGE AND SIGNAL PROCESSING WORKSHOP (WNYISPW), 2018,