Nonexistence of rational rotation-minimizing frames on cubic curves

被引:36
|
作者
Han, Chang Yong [1 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, Yongin 446701, Gyeonggi Do, South Korea
关键词
Pythagorean-hodograph curve; rotation-minimizing frame; Euler-Rodrigues frame; rational frame; cubic curve;
D O I
10.1016/j.cagd.2007.09.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove there is no rational rotation-minimizing frame (RMF) along any non-planar regular cubic polynomial curve. Although several schemes have been proposed to generate rational frames that approximate RMF's, exact rational RMF's have been only observed on certain Pythagorean-hodograph curves of degree seven. Using the Euler-Rodrigues frames naturally defined on Pythagorean-hodograph curves, we characterize the condition for the given curve to allow a rational RMF and rigorously prove its nonexistence in the case of cubic curves. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:298 / 304
页数:7
相关论文
共 50 条
  • [31] Flat-end tool orientation based on rotation-minimizing frame
    Xiang Zou
    Hon-Yuen Tam
    Hai-Yin Xu
    Ke Shi
    Advances in Manufacturing, 2019, 7 : 257 - 269
  • [32] RATIONAL CUBIC CURVES AS BR-CURVES
    FIOROT, JC
    JEANNIN, P
    TALEB, S
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (01) : 67 - 88
  • [33] On the intersection of rational curves with cubic plane curves
    Xu, G
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 1 - 13
  • [34] Rational cubic curves as BR-curves
    Universite de Valenciennes et du, Hainaut-Cambresis, Valenciennes, France
    Comput Aided Geom Des, 1 (67-88):
  • [35] Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants
    Farouki, Rida T.
    Han, Chang Yong
    Dospra, Petroula
    Sakkalis, Takis
    COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (07) : 653 - 671
  • [36] Computing rotation minimizing frames using quaternions
    Yoon, David
    Narduzzi, Mark
    Shen, Jie
    Computer-Aided Design and Applications, 2012, 9 (05): : 679 - 690
  • [37] Balancing Rotation Minimizing Frames with Additional Objectives
    Mossman, C.
    Bartels, R. H.
    Samavati, F. F.
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [38] Accelerated frames and galactic rotation curves
    Ulhoa, S. C.
    Carneiro, F. L.
    MODERN PHYSICS LETTERS A, 2019, 34 (27)
  • [39] ROTATION MINIMIZING FRAMES AND SPHERICAL CURVES IN SIMPLY ISOTROPIC AND PSEUDO-ISOTROPIC 3-SPACES
    Da Silva, Luiz C. B.
    TAMKANG JOURNAL OF MATHEMATICS, 2020, 51 (01): : 31 - 52
  • [40] Counting rational points on cubic curves
    Roger Heath-Brown
    Damiano Testa
    Science China Mathematics, 2010, 53 : 2259 - 2268