Counting rational points on cubic curves

被引:0
|
作者
Roger Heath-Brown
Damiano Testa
机构
[1] University of Oxford,Mathematical Institute
来源
Science China Mathematics | 2010年 / 53卷
关键词
cubic curves; rational points; counting function; elliptic curves; determinant method; -descent; 11D25; 11D45; 11G05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals. The bounds are uniform in the curve and involve the rank of the corresponding Jacobian. The method used in the proof is a combination of the “determinant method” with an m-descent on the curve.
引用
收藏
页码:2259 / 2268
页数:9
相关论文
共 50 条