Counting rational points on cubic curves

被引:0
|
作者
HEATH-BROWN Roger [1 ]
TESTA Damiano [1 ]
机构
[1] Mathematical Institute,University of Oxford,Oxford,UK
关键词
cubic curves; rational points; counting function; elliptic curves; determinant method; m-descent;
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条