We prove there is no rational rotation-minimizing frame (RMF) along any non-planar regular cubic polynomial curve. Although several schemes have been proposed to generate rational frames that approximate RMF's, exact rational RMF's have been only observed on certain Pythagorean-hodograph curves of degree seven. Using the Euler-Rodrigues frames naturally defined on Pythagorean-hodograph curves, we characterize the condition for the given curve to allow a rational RMF and rigorously prove its nonexistence in the case of cubic curves. (C) 2007 Elsevier B.V. All rights reserved.