Identification of Nonlinear State-Space Systems With Skewed Measurement Noises

被引:29
|
作者
Liu, Xinpeng [1 ,2 ]
Yang, Xianqiang [2 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
[2] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise measurement; State-space methods; State estimation; Gaussian distribution; Smoothing methods; Robustness; Monte Carlo methods; Nonlinear system identification; skewed noise; generalized hyperbolic skew Student's t-distribution; expectation-maximization algorithm; ROBUST IDENTIFICATION; PARAMETER;
D O I
10.1109/TCSI.2022.3193444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the identification problem for nonlinear state-space models with skewed measurement noises. The generalized hyperbolic skew Student's t (GHSkewt) distribution is employed to describe the skewed noises and formulate the hierarchical model of the considered system. A unified framework for estimating unknown states and model parameters is presented based on expectation-maximization (EM) algorithm, in which the forward filtering backward simulation with rejection sampling (RS-FFBSi) is employed to efficiently estimate the smoothing densities of the hidden states, and optimization method is adopted to update model parameters. One numerical study and the electro-mechanical positioning system (EMPS) are employed to verify the effectiveness of the developed approach.
引用
收藏
页码:4654 / 4662
页数:9
相关论文
共 50 条
  • [1] A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems
    Pan, Wei
    Yuan, Ye
    Goncalves, Jorge
    Stan, Guy-Bart
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 182 - 187
  • [2] Identification of Nonlinear State-Space Systems From Heterogeneous Datasets
    Pan, Wei
    Yuan, Ye
    Ljung, Lennart
    Goncalves, Jorge
    Stan, Guy-Bart
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (02): : 737 - 747
  • [3] Variational Identification of Linearly Parameterized Nonlinear State-Space Systems
    Liu, Xinpeng
    Yang, Xianqiang
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (04) : 1844 - 1854
  • [4] Robust Inference for State-Space Models with Skewed Measurement Noise
    Nurminen, Henri
    Ardeshiri, Tohid
    Piche, Robert
    Gustafsson, Fredrik
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1898 - 1902
  • [5] State-Space Kernelized Closed-Loop Identification of Nonlinear Systems
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1126 - 1131
  • [6] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498
  • [7] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    [J]. AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [8] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [9] STATE ELIMINATION FOR NONLINEAR NEUTRAL STATE-SPACE SYSTEMS
    Halas, Miroslav
    Bistak, Pavol
    [J]. KYBERNETIKA, 2014, 50 (04) : 473 - 490
  • [10] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Junhong Li
    Wei Xing Zheng
    Juping Gu
    Liang Hua
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 2374 - 2393