State-Space Kernelized Closed-Loop Identification of Nonlinear Systems

被引:2
|
作者
Shakib, M. F. [1 ]
Toth, R. [2 ]
Pogromsky, A. Y. [1 ]
Pavlov, A. [3 ]
van de Wouw, N. [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[3] NTNU, Dept Geosci & Petr, Trondheim, Norway
[4] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Nonlinear State-Space Identification; NARX modeling; Kernel Canonical Correlation Analysis; LS-SVM; SUBSPACE IDENTIFICATION; GAUSSIAN-PROCESSES;
D O I
10.1016/j.ifacol.2020.12.1317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a non-parametric state-space identification approach for open-loop and closed-loop discrete-time nonlinear systems with multiple inputs and multiple outputs. Employing a least squares support vector machine (LS-SVM) approach in a reproducing kernel Hilbert space framework, a nonlinear auto-regressive model with exogenous terms is identified to provide a non-parametric estimate of the innovation noise sequence. Subsequently, this estimate is used to obtain a compatible non-parametric estimate of the state sequence in an unknown basis using kernel canonical correlation analysis. Finally, the estimate of the state sequence is used together with the estimated innovation noise sequence to find a non-parametric state-space model, again using a LS-SVM approach. The performance of the approach is analyzed in a simulation study with a nonlinear system operating both in open loop and closed loop. The identification approach can be viewed as a nonlinear counterpart of consistent subspace identification techniques for linear time-invariant systems operating in closed loop. Copyright (C) 2020 The Authors.
引用
收藏
页码:1126 / 1131
页数:6
相关论文
共 50 条
  • [1] State-Space Parameter Estimation for Closed-Loop Fault Detection and Identification
    Cimpoesu, Elena M.
    Ciubotaru, Bogdan D.
    Stefanoiu, Dan
    [J]. 2013 17TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2013, : 119 - 124
  • [2] State-space system identification from closed-loop frequency response data
    Huang, JK
    Lee, HC
    Schoen, MP
    Hsiao, MH
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (06) : 1378 - 1380
  • [3] Non-asymptotic state-space identification of closed-loop stochastic linear systems using instrumental variables
    Szentpeteri, Szabolcs
    Csaji, Balazs Csanad
    [J]. SYSTEMS & CONTROL LETTERS, 2023, 178
  • [4] A closed-loop identification protocol for nonlinear dynamical systems
    Feng, Xiao-jiang
    Rabitz, Herschel
    Turinici, Gabriel
    Le Bris, Claude
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (25): : 7755 - 7762
  • [5] COMPLETE IDENTIFICATION OF SOME NONLINEAR CLOSED-LOOP SYSTEMS
    ECONOMAKOS, E
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1973, 17 (01) : 209 - 222
  • [6] ADAPTIVE IDENTIFICATION IN CLOSED-LOOP SYSTEMS
    AKSENOV, VM
    PASHCHENKO, FF
    [J]. AUTOMATION AND REMOTE CONTROL, 1980, 41 (10) : 1388 - 1396
  • [7] IDENTIFICATION OF A CLOSED-LOOP OF APERIODIC SYSTEMS
    DINDELEU.D
    [J]. MESURES REGULATION AUTOMATISME, 1974, 39 (05): : 37 - 42
  • [8] Subspace identification of closed-loop systems
    Katayama, T
    [J]. SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1517 - 1520
  • [9] A parametrization for the closed-loop identification of nonlinear time-varying systems
    Dasgupta, S
    Anderson, BDO
    [J]. AUTOMATICA, 1996, 32 (10) : 1349 - 1360
  • [10] Differentially coprime kernel representations and closed-loop identification of nonlinear systems
    Fujimoto, K
    Anderson, BDO
    De Bruyne, F
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 302 - 306