Robust regression with projection based M-estimators

被引:45
|
作者
Chen, HF [1 ]
Meer, P [1 ]
机构
[1] Rutgers State Univ, Elect & Comp Engn Dept, Piscataway, NJ 08854 USA
关键词
D O I
10.1109/ICCV.2003.1238441
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The robust regression techniques in the RANSAC family are popular today in computer vision, but their performance depends on a user supplied threshold. We eliminate this drawback of RANSAC by reformulating another robust method, the M-estimator as a projection pursuit optimization problem. The projection based pbM-estimator automatically derives the threshold from univariate kernel density estimates. Nevertheless, the performance of the pbM-estimator equals or exceeds that of RANSAC techniques tuned to the optimal threshold, a value which is never available in practice. Experiments were performed both with synthetic and real data in the affine motion and fundamental matrix estimation tasks.
引用
收藏
页码:878 / 885
页数:8
相关论文
共 50 条
  • [21] Image Diffusion In Connection With Robust M-Estimators
    Mandava, Ajay K.
    Regentova, Emma E.
    [J]. INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND SYSTEM DESIGN 2011, 2012, 30 : 1138 - 1145
  • [22] Optimal robust M-estimators using divergences
    Toma, Aida
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (01) : 1 - 5
  • [23] ROBUST M-ESTIMATORS OF MULTIVARIATE LOCATION AND SCATTER
    MARONNA, RA
    [J]. ANNALS OF STATISTICS, 1976, 4 (01): : 51 - 67
  • [24] Robust self-organization with M-estimators
    Lopez-Rubio, Ezequiel
    Palomo, Esteban J.
    Dominguez, Enrique
    [J]. NEUROCOMPUTING, 2015, 151 : 408 - 423
  • [25] MOST ROBUST M-ESTIMATORS IN THE INFINITESIMAL SENSE
    ROUSSEEUW, PJ
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (04): : 541 - 551
  • [26] Modified robust ridge M-estimators for linear regression models: an application to tobacco data
    Wasim, Danish
    Khan, Sajjad Ahmad
    Suhail, Muhammad
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2703 - 2724
  • [27] Weighted penalized m-estimators in robust ridge regression: an application to gasoline consumption data
    Wasim, Danish
    Suhail, Muhammad
    Albalawi, Olayan
    Shabbir, Maha
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024,
  • [28] High-dimensional robust approximated M-estimators for mean regression with asymmetric data
    Luo, Bin
    Gao, Xiaoli
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [29] Modified Robust Ridge M-Estimators in Two-Parameter Ridge Regression Model
    Yasin, Seyab
    Salem, Sultan
    Ayed, Hamdi
    Kamal, Shahid
    Suhail, Muhammad
    Khan, Yousaf Ali
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [30] Redescending M-estimators and Deterministic Annealing, with Applications to Robust Regression and Tail Index Estimation
    Fruehwirth, Rudolf
    Waltenberger, Wolfgang
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (3-4) : 301 - 317