Robust regression with projection based M-estimators

被引:45
|
作者
Chen, HF [1 ]
Meer, P [1 ]
机构
[1] Rutgers State Univ, Elect & Comp Engn Dept, Piscataway, NJ 08854 USA
关键词
D O I
10.1109/ICCV.2003.1238441
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The robust regression techniques in the RANSAC family are popular today in computer vision, but their performance depends on a user supplied threshold. We eliminate this drawback of RANSAC by reformulating another robust method, the M-estimator as a projection pursuit optimization problem. The projection based pbM-estimator automatically derives the threshold from univariate kernel density estimates. Nevertheless, the performance of the pbM-estimator equals or exceeds that of RANSAC techniques tuned to the optimal threshold, a value which is never available in practice. Experiments were performed both with synthetic and real data in the affine motion and fundamental matrix estimation tasks.
引用
收藏
页码:878 / 885
页数:8
相关论文
共 50 条
  • [31] M-Estimators Based Activation Functions for Robust Neural Network Learning
    Essai, Mohamed H.
    Abd Ellah, Ali R.
    [J]. 2014 10TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2014, : 70 - 75
  • [32] Tightly Coupled GNSS/INS Integration based on Robust M-Estimators
    Crespillo, Omar Garcia
    Medina, Daniel
    Skaloud, Jan
    Meurer, Michael
    [J]. 2018 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS), 2018, : 1554 - 1561
  • [33] Subspace estimation using projection based M-estimators over Grassmann manifolds
    Subbarao, Raghav
    Meer, Peter
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 301 - 312
  • [34] A robust parametric method for power harmonic estimation based on M-Estimators
    Cai Tao
    Duan Shanxu
    Ren Ting
    Liu Fangrui
    [J]. MEASUREMENT, 2010, 43 (01) : 67 - 77
  • [35] A Robust Parametric Method for Power Harmonic Estimation Based on M-Estimators
    Cai Tao
    Duan Shanxu
    Liu Bangyin
    [J]. 2009 IEEE 6TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 2009, : 1830 - 1835
  • [36] Robust Automatic Reduction of Multibeam Bathymetric Data Based on M-estimators
    Rezvani, Mohammad-Hadi
    Sabbagh, Abbas
    Ardalan, Alireza A.
    [J]. MARINE GEODESY, 2015, 38 (04) : 327 - 344
  • [37] GENERALIZED M-ESTIMATORS FOR ERRORS-IN-VARIABLES REGRESSION
    CHENG, CL
    VANNESS, JW
    [J]. ANNALS OF STATISTICS, 1992, 20 (01): : 385 - 397
  • [38] AN ALMOST-SURE EXPANSION FOR REGRESSION M-ESTIMATORS
    FRESEN, JL
    LOMBARD, F
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1992, 26 (02) : 83 - 93
  • [39] BOUNDEDNESS OF M-ESTIMATORS FOR LINEAR REGRESSION IN TIME SERIES
    Johansen, Soren
    Nielsen, Bent
    [J]. ECONOMETRIC THEORY, 2019, 35 (03) : 653 - 683
  • [40] Data-adaptive M-estimators for robust regression via bi-level optimization
    Zhang, Ceyao
    Zhang, Tianjian
    Yin, Feng
    Zoubir, Abdelhak M.
    [J]. SIGNAL PROCESSING, 2023, 210