Weighted penalized m-estimators in robust ridge regression: an application to gasoline consumption data

被引:0
|
作者
Wasim, Danish [1 ,2 ]
Suhail, Muhammad [3 ]
Albalawi, Olayan [4 ]
Shabbir, Maha [5 ,6 ]
机构
[1] Abasyn Univ, Dept Microbiol, Peshawar, Pakistan
[2] Islamia Coll Peshawar, Dept Stat, Peshawar, Pakistan
[3] Univ Agr Peshawar, Dept Stat, Amir Muhammad Khan Campus, Mardan, Pakistan
[4] Univ Tabuk, Fac Sci, Dept Stat, Tabuk, Saudi Arabia
[5] Univ Punjab, Coll Stat Sci, Lahore, Pakistan
[6] Lahore Sch Econ, Dept Math & Stat Sci, Lahore, Pakistan
关键词
MSE; multicollinearity; OLS; outliers; robust ridge regression; weighted penalized m-estimator; SIMULATION; PERFORMANCE; MODEL;
D O I
10.1080/00949655.2024.2386391
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The OLS and ridge regression (RR) estimators are adversely affected, when the problem of multicollinearity and y-direction outliers occur together. The robust ridge regression with penalized parameters offers biased estimators with lower variance than OLS and RR. The optimal penalized parameter value is crucial for balancing variance and bias. This study proposes three new weighted robust penalized M-estimators to address both multicollinearity and y-direction outliers. Their performance is evaluated against OLS, RR and existing penalized M-estimators using Monte Carlo simulations based on mean squared error (MSE). The new estimators exhibit lower MSE in the presence of multicollinearity and y-direction outliers. A real data application on gasoline consumption demonstrates the superior performance of the new estimators.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Modified robust ridge M-estimators for linear regression models: an application to tobacco data
    Wasim, Danish
    Khan, Sajjad Ahmad
    Suhail, Muhammad
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2703 - 2724
  • [2] New penalized M-estimators in robust ridge regression: real life applications using sports and tobacco data
    Wasim, Danish
    Khan, Sajjad Ahmad
    Suhail, Muhammad
    Shabbir, Maha
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [3] Modified Robust Ridge M-Estimators in Two-Parameter Ridge Regression Model
    Yasin, Seyab
    Salem, Sultan
    Ayed, Hamdi
    Kamal, Shahid
    Suhail, Muhammad
    Khan, Yousaf Ali
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] ROBUST REGRESSION TREES BASED ON M-ESTIMATORS
    Galimberti, G.
    Pillati, M.
    Soffritti, G.
    [J]. STATISTICA, 2007, 67 (02): : 173 - 190
  • [5] A review on robust M-estimators for regression analysis
    de Menezes, D. Q. F.
    Prata, D. M.
    Secchi, A. R.
    Pinto, J. C.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2021, 147
  • [6] A NOTE ON THE UNIQUENESS OF M-ESTIMATORS IN ROBUST REGRESSION
    CRISP, A
    BURRIDGE, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (02): : 205 - 208
  • [7] Robust regression with projection based M-estimators
    Chen, HF
    Meer, P
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 878 - 885
  • [8] Weighted M-estimators for multivariate clustered data
    El Asri, M.
    Blanke, D.
    Gabriel, E.
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 112 : 26 - 34
  • [9] Influence functions for penalized M-estimators
    Avella-Medina, Marco
    [J]. BERNOULLI, 2017, 23 (4B) : 3178 - 3196
  • [10] Regression M-estimators with doubly censored data
    Ren, JJ
    Gu, MG
    [J]. ANNALS OF STATISTICS, 1997, 25 (06): : 2638 - 2664