Intelligent Modeling and Optimization of ECM Process Parameters

被引:2
|
作者
Jegan, T. M. Chenthil [1 ]
Ravindran, D. [2 ]
Anand, M. Dev [3 ]
机构
[1] St Xaviers Catholic Coll Engn, Dept Mech Engn, Kanyakumari, India
[2] Natl Engn Coll, Dept Mech Engn, Thoothukudi, India
[3] Noorul Islam Ctr Higher Educ, Dept Mech Engn, Kanyakumari, India
关键词
Electrochemical machining; Artificial neural network; Weighted sum particle swarm optimization; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/978-81-322-2126-5_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electrochemical machining (ECM) is an unconventional process used for the machining of hard materials and metal matrix composites. In the present work, the artificial neural network trained with back-propagation algorithm is used for correlating the interactive and high-order influences of various machining parameters on the predominant machining factors. The operators' requirements cannot be satisfied by the machining parameters provided by ECM machine tool builders. The process parameters are then optimized using weighted sum particle swarm optimization. The fitness function for optimization is obtained from the developed model.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
  • [41] Optimization of fused deposition modeling (FDM) process parameters for flexural strength
    Dev, Saty
    Srivastava, Rajeev
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 3012 - 3016
  • [42] Modeling and optimization of process parameters for defect toleranced drilling of GFRP composites
    Arul, S.
    Raj, D. Samuel
    Vijayaraghavan, L.
    Malhotra, S. K.
    Krishnamurthy, R.
    MATERIALS AND MANUFACTURING PROCESSES, 2006, 21 (04) : 357 - 365
  • [43] Mathematical modeling and optimization of EDM Process Parameters for Aluminium Hybrid composites
    Maniyar, Kamalkishor G.
    Ingole, Dilip S.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (14) : 27700 - 27709
  • [44] Modeling and optimization of process parameters in micro Wire EDM by Genetic Algorithm
    Somashekhar, K. P.
    Ramachandran, N.
    Mathew, Jose
    ADVANCES IN ABRASIVE TECHNOLOGY XII, 2009, 76-78 : 566 - +
  • [45] Numerical modeling of induction heating processes with automatic optimization of process parameters
    Bay, F
    Favennec, Y
    Labbe, V
    Chenot, JL
    SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS, 2001, : 391 - 396
  • [46] MODELING AND OPTIMIZATION OF FACE MILLING PROCESS PARAMETERS FOR AISI 4140 STEEL
    Basar, Gokhan
    Kirli Akin, Hediye
    Kahraman, Funda
    Fedai, Yusuf
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2018, 12 (01): : 5 - 10
  • [47] Optimization and modeling of process parameters for nutrient recovery from sewage wastewater
    Mani, Vasanthi
    Sathiasivan, Kiruthika
    Jeyalakshmi, R.
    WATER SCIENCE AND TECHNOLOGY, 2024, 90 (06) : 1744 - 1758
  • [48] Modeling and process parameter optimization of laser cutting based on artificial neural network and intelligent optimization algorithm
    Xingfei Ren
    Jinwei Fan
    Ri Pan
    Kun Sun
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 1177 - 1188
  • [49] Optimization of a Cu CMP process modeling parameters of nanometer integrated circuits
    Ruan Wenbiao
    Chen Lan
    Ma Tianyu
    Fang Jingjing
    Zhang He
    Ye Tianchun
    JOURNAL OF SEMICONDUCTORS, 2012, 33 (08)
  • [50] An intelligent system for low-pressure die-cast process parameters optimization
    Zhang, Liqiang
    Wang, Rongji
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 65 (1-4): : 517 - 524