Intelligent Modeling and Optimization of ECM Process Parameters

被引:2
|
作者
Jegan, T. M. Chenthil [1 ]
Ravindran, D. [2 ]
Anand, M. Dev [3 ]
机构
[1] St Xaviers Catholic Coll Engn, Dept Mech Engn, Kanyakumari, India
[2] Natl Engn Coll, Dept Mech Engn, Thoothukudi, India
[3] Noorul Islam Ctr Higher Educ, Dept Mech Engn, Kanyakumari, India
关键词
Electrochemical machining; Artificial neural network; Weighted sum particle swarm optimization; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/978-81-322-2126-5_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electrochemical machining (ECM) is an unconventional process used for the machining of hard materials and metal matrix composites. In the present work, the artificial neural network trained with back-propagation algorithm is used for correlating the interactive and high-order influences of various machining parameters on the predominant machining factors. The operators' requirements cannot be satisfied by the machining parameters provided by ECM machine tool builders. The process parameters are then optimized using weighted sum particle swarm optimization. The fitness function for optimization is obtained from the developed model.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
  • [21] Acetylation of Amaranthus viridis starch: Modeling and process parameters optimization
    Fasuan, Temitope Omolayo
    Akanbi, Charles Taiwo
    Betiku, Eriola
    FOOD SCIENCE & NUTRITION, 2018, 6 (05): : 1287 - 1297
  • [22] Modeling and optimization of process parameters of biofilm reactor for wastewater treatment
    Maurya, A. K.
    Reddy, B. S.
    Theerthagiri, J.
    Narayana, P. L.
    Park, C. H.
    Hong, J. K.
    Yeom, J-T
    Cho, K. K.
    Reddy, N. S.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 787 (787)
  • [23] Modeling of ACF–COG Interconnection Resistance and Optimization of Process Parameters
    Chen, Ruiqing
    Liu, Lei
    Jia, Lei
    Luo, Chen
    Zhou, Yijun
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (05): : 277 - 286
  • [24] Optimization of Galvannealing Parameters through Numerical Modeling of Galvannealing Process
    A. K. Verma
    Sanjay Chandra
    N. Bandyopadhyay
    B. K. Dhindaw
    R. D. K. Misra
    Metallurgical and Materials Transactions A, 2009, 40 : 1153 - 1159
  • [25] MODELING AND OPTIMIZATION OF PROCESS PARAMETERS FOR IMPROVING OSMOTIC DEHYDRATION OF KIWIFRUIT
    Liu, B.
    Feng, W.
    Peng, B.
    ITALIAN JOURNAL OF FOOD SCIENCE, 2019, 31 (01) : 75 - 86
  • [26] Wood Biomass Gasification Process Modeling and Optimization of the Parameters of Control
    Li Da-zhong
    Ma Jing-yan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 5152 - 5157
  • [27] Optimization of Galvannealing Parameters through Numerical Modeling of Galvannealing Process
    Verma, A. K.
    Chandra, Sanjay
    Bandyopadhyay, N.
    Dhindaw, B. K.
    Misra, R. D. K.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (05): : 1153 - 1159
  • [28] Optimization and Modeling of Process Parameters for Lipase Production by Bacillus brevis
    Rajendran, Aravindan
    Thangavelu, Viruthagiri
    FOOD AND BIOPROCESS TECHNOLOGY, 2012, 5 (01) : 310 - 322
  • [29] Optimization of Welding Process Parameters Based on Kriging-PSO Intelligent Algorithm
    Ma X.-Y.
    Sun Z.-L.
    Zhang Y.-B.
    Zang X.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2019, 40 (03): : 370 - 374and397
  • [30] A novel approach of RSM-based TOPSIS-JAYA algorithm for optimization of ECM process parameters
    Chourasiya, Anil
    Krishna, C. M.
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2023, 46 (06) : 628 - 637