Intelligent Modeling and Optimization of ECM Process Parameters

被引:2
|
作者
Jegan, T. M. Chenthil [1 ]
Ravindran, D. [2 ]
Anand, M. Dev [3 ]
机构
[1] St Xaviers Catholic Coll Engn, Dept Mech Engn, Kanyakumari, India
[2] Natl Engn Coll, Dept Mech Engn, Thoothukudi, India
[3] Noorul Islam Ctr Higher Educ, Dept Mech Engn, Kanyakumari, India
关键词
Electrochemical machining; Artificial neural network; Weighted sum particle swarm optimization; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/978-81-322-2126-5_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electrochemical machining (ECM) is an unconventional process used for the machining of hard materials and metal matrix composites. In the present work, the artificial neural network trained with back-propagation algorithm is used for correlating the interactive and high-order influences of various machining parameters on the predominant machining factors. The operators' requirements cannot be satisfied by the machining parameters provided by ECM machine tool builders. The process parameters are then optimized using weighted sum particle swarm optimization. The fitness function for optimization is obtained from the developed model.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
  • [31] Optimizing the process parameters of ECM using Taguchi method
    Khundrakpam, Nimo Singh
    Brar, Gurinder Singh
    Devi, Maibam Bindya
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 1373 - 1379
  • [32] Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms
    Choudhary, Ankush
    Kumar, Manoj
    Gupta, Munish Kumar
    Unune, Deepak Kumar
    Mia, Mozammel
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (10): : 5761 - 5774
  • [33] Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms
    Ankush Choudhary
    Manoj Kumar
    Munish Kumar Gupta
    Deepak Kumar Unune
    Mozammel Mia
    Neural Computing and Applications, 2020, 32 : 5761 - 5774
  • [34] Intelligent Modeling and Multiobjective Optimization of Die Sinking Electrochemical Spark Machining Process
    Panda, Mohan Charan
    Yadava, Vinod
    MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (01) : 10 - 25
  • [35] Integrated Modeling of Transfer Learning and Intelligent Heuristic Optimization for a Steam Cracking Process
    Bi, Kexin
    Beykal, Burcu
    Avraamidou, Styliani
    Pappas, Iosif
    Pistikopoulos, Efstratios N.
    Qiu, Tong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (37) : 16357 - 16367
  • [36] Intelligent process modeling and optimization of die-sinking electric discharge machining
    Joshi, S. N.
    Pande, S. S.
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 2743 - 2755
  • [37] PROCESS MODELING FOR INTELLIGENT CONTROL
    FERAYBEAUMONT, S
    COREA, R
    THAM, MT
    MORRIS, AJ
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1992, 5 (06) : 483 - 492
  • [38] Correction to: Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms
    Ankush Choudhary
    Manoj Kumar
    Munish Kumar Gupta
    Deepak Rajendra Unune
    Mozammel Mia
    Neural Computing and Applications, 2020, 32 : 11961 - 11961
  • [39] Temperature in Bone Drilling Process: Mathematical Modeling and Optimization of Effective Parameters
    Tahmasbi, V.
    Ghoreishi, M.
    Zolfaghari, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (07): : 946 - 953
  • [40] Modeling and process parameter optimization of laser cutting based on artificial neural network and intelligent optimization algorithm
    Ren, Xingfei
    Fan, Jinwei
    Pan, Ri
    Sun, Kun
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4): : 1177 - 1188