Parameter estimation of a monod-type model based on genetic algorithms and sensitivity analysis

被引:6
|
作者
Roeva, Olympia [1 ]
机构
[1] Bulgarian Acad Sci, Ctr Biomed Engn Prof Ivan Daskalov, BU-1113 Sofia, Bulgaria
来源
关键词
D O I
10.1007/978-3-540-78827-0_69
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mathematical models and their parameters used to describe cell behavior constitute the key problem of bioprocess modelling, in practical, in parameter estimation. The model building leads to an information deficiency and to non unique parameter identification. While searching for new, more adequate modeling concepts, methods which draw their initial inspiration from nature have received the early attention. One of the most common direct methods for global search is genetic algorithm. A system of six ordinary differential equations is proposed to model the variables of the regarded cultivation process. Parameter estimation is carried out using real experimental data set from an E. coli MC4110 fed-batch cultivation process. In order to study and evaluate the links and magnitudes existing between the model parameters and variables sensitivity analysis is carried out. A procedure for consecutive estimation of four definite groups of model parameters based on sensitivity analysis is proposed. The application of that procedure and genetic algorithms leads to a successful parameter identification.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 50 条
  • [11] Reactive Flow Model Parameter Estimation Using Genetic Algorithms
    Ribeiro, Jose Baranda
    Mendes, Ricardo
    Silva, Cristovao
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2010, 35 (03) : 292 - 299
  • [12] ARMA model order and parameter estimation using genetic algorithms
    Abo-Hammour, Za'er S.
    Alsmadi, Othman M. K.
    Al-Smadi, Adnan M.
    Zaqout, Maha I.
    Saraireh, Mohammad S.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2012, 18 (02) : 201 - 221
  • [13] Cosmological Parameter Estimation with Genetic Algorithms
    Medel-Esquivel, Ricardo
    Gomez-Vargas, Isidro
    Morales Sanchez, Alejandro A.
    Garcia-Salcedo, Ricardo
    Alberto Vazquez, Jose
    UNIVERSE, 2024, 10 (01)
  • [14] Model-based neural algorithms for parameter estimation
    Skantze, FP
    INFORMATION SCIENCES, 1998, 104 (1-2) : 107 - 128
  • [15] Optimization method of maximum likelihood estimation parameter estimation based on genetic algorithms
    School of Marine Engineering, Northwestern Polytechnical University, Xi'an 710072, China
    J. Mech. Strength, 2006, 1 (79-82):
  • [16] Parameter estimation of an anisotropic damage model for concrete using genetic algorithms
    Wardeh, Muhammad A.
    Toutanji, Houssam A.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2017, 26 (06) : 801 - 825
  • [17] Parameter Estimation for Nonlinear Biological System Model Based on Global Sensitivity Analysis
    Jia, Jianfang
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 279 - 282
  • [18] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 (25-33) : 25 - 33
  • [19] Parameter estimation for an induction motor dynamic model using genetic algorithms
    Guangdong Univ of Technology, Guangzhou, China
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2000, 20 (08): : 37 - 41
  • [20] A respiratory system model: Parameter estimation and sensitivity analysis
    Fink, Martin
    Batzel, Jerry J.
    Tran, Hien
    CARDIOVASCULAR ENGINEERING, 2008, 8 (02) : 120 - 134