Parameter estimation of a monod-type model based on genetic algorithms and sensitivity analysis

被引:6
|
作者
Roeva, Olympia [1 ]
机构
[1] Bulgarian Acad Sci, Ctr Biomed Engn Prof Ivan Daskalov, BU-1113 Sofia, Bulgaria
来源
关键词
D O I
10.1007/978-3-540-78827-0_69
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mathematical models and their parameters used to describe cell behavior constitute the key problem of bioprocess modelling, in practical, in parameter estimation. The model building leads to an information deficiency and to non unique parameter identification. While searching for new, more adequate modeling concepts, methods which draw their initial inspiration from nature have received the early attention. One of the most common direct methods for global search is genetic algorithm. A system of six ordinary differential equations is proposed to model the variables of the regarded cultivation process. Parameter estimation is carried out using real experimental data set from an E. coli MC4110 fed-batch cultivation process. In order to study and evaluate the links and magnitudes existing between the model parameters and variables sensitivity analysis is carried out. A procedure for consecutive estimation of four definite groups of model parameters based on sensitivity analysis is proposed. The application of that procedure and genetic algorithms leads to a successful parameter identification.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 50 条
  • [21] Model discrimination and parameter estimation through sensitivity analysis
    Sales-Cruz, Mauricio
    Gani, Rafiqul
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 625 - 631
  • [22] Role of Sensitivity Analysis in Load Model Parameter Estimation
    Mitra, Parag
    Vittal, Vijay
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [23] Analysis of Parameter Sensitivity for the NSS Model of Term Structure Based on the Genetic Algorithm
    Zhou Rongxi
    Liu Hanzhang
    Zou Lin
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3262 - 3265
  • [24] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, LJ
    Park, CH
    Park, C
    Lee, T
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1997, 35 (01) : 47 - 49
  • [25] Aerodynamic parameter estimation using genetic algorithms
    Shi, Yang
    Qian, Weiqi
    Wang, Qing
    He, Kaifeng
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 629 - +
  • [26] Application of genetic algorithms to parameter estimation of bioprocesses
    L. J. Park
    C. H. Park
    C. Park
    T. Lee
    Medical and Biological Engineering and Computing, 1997, 35 : 47 - 49
  • [27] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, L.J.
    Park, C.H.
    Park, C.
    Lee, T.
    Medical and Biological Engineering and Computing, 1997, 35 (01): : 47 - 49
  • [28] Application of genetic algorithms for aerodynamic parameter estimation
    Qian, Wei-Qi
    Wang, Qing
    Wang, Wen-Zheng
    He, Kai-Feng
    Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2003, 21 (02):
  • [29] Genetic algorithm based parameter estimation of Nash model
    Dong, Si-Hui
    WATER RESOURCES MANAGEMENT, 2008, 22 (04) : 525 - 533
  • [30] Genetic Algorithm Based Parameter Estimation of Nash Model
    Si-Hui Dong
    Water Resources Management, 2008, 22 : 525 - 533