Reactive Flow Model Parameter Estimation Using Genetic Algorithms

被引:4
|
作者
Ribeiro, Jose Baranda [1 ]
Mendes, Ricardo [1 ]
Silva, Cristovao [2 ]
机构
[1] Univ Coimbra, Dept Mech Engn, ADAI, P-3030788 Coimbra, Portugal
[2] Univ Coimbra, Dept Mech Engn, Ctr Engn Mecan, P-3030788 Coimbra, Portugal
关键词
Genetic Algorithms; Reactive Flow Model; IGNITION; GROWTH;
D O I
10.1002/prep.200900048
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
An original real-coded genetic algorithm methodology that has been developed for the estimation of the parameters of the Tarver reactive flow model of shock initiation and detonation of heterogeneous solid explosives is described in detail. This methodology allows, in a single optimisation procedure and without the need for a starting solution, to search for the 15 parameters of the reaction rate law of the reactive flow model that fit the numerical results to the experimental ones. The developed methodology was applied and tested with an experimental situation, described in detail in the literature, involving the acceleration of a tantalum metal plate by an LX-17 explosive charge. The obtained parameters allow a very good description of the experimental results and are close to the ones originally used by Tarver and co-authors in their simulation of the phenomenon.
引用
收藏
页码:292 / 299
页数:8
相关论文
共 50 条
  • [1] ARMA model order and parameter estimation using genetic algorithms
    Abo-Hammour, Za'er S.
    Alsmadi, Othman M. K.
    Al-Smadi, Adnan M.
    Zaqout, Maha I.
    Saraireh, Mohammad S.
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2012, 18 (02) : 201 - 221
  • [2] Parameter estimation of an anisotropic damage model for concrete using genetic algorithms
    Wardeh, Muhammad A.
    Toutanji, Houssam A.
    [J]. INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2017, 26 (06) : 801 - 825
  • [3] Parameter estimation for an induction motor dynamic model using genetic algorithms
    Guangdong Univ of Technology, Guangzhou, China
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2000, 20 (08): : 37 - 41
  • [4] Aerodynamic parameter estimation using genetic algorithms
    Shi, Yang
    Qian, Weiqi
    Wang, Qing
    He, Kaifeng
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 629 - +
  • [5] Hybrid quantum genetic algorithms for model parameter estimation
    Wang Ling
    Wu Hao
    Zheng Da-zhong
    [J]. PROCEEDINGS OF 2005 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1 AND 2, 2005, : 527 - 530
  • [6] Estimation of the Reactive Flow Model Parameters for an Ammonium Nitrate- Based Emulsion Explosive Using Genetic Algorithms
    Ribeiro, J. B.
    Silva, C.
    Mendes, R.
    [J]. JOURNAL OF ENERGETIC MATERIALS, 2010, 28 : 180 - 204
  • [7] Optical flow estimation using genetic algorithms
    Tagliasacchi, M
    [J]. FUZZY LOGIC AND APPLICATIONS, 2006, 2955 : 309 - 316
  • [8] Parameter estimation in a three-dimensional wind field model using genetic algorithms
    Rodríguez, E
    Montero, G
    Montenegro, R
    Escobar, JM
    González-Yuste, JM
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 950 - 959
  • [9] Using Genetic Algorithms for Parameter Estimation of a Two-Component Circular Mixture Model
    Kilic, Muhammet Burak
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 99 - 110
  • [10] Aquifer parameter estimation using genetic algorithms and neural networks
    Lingireddy, S
    [J]. CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 1998, 15 (02) : 125 - 144