Aquifer parameter estimation using genetic algorithms and neural networks

被引:25
|
作者
Lingireddy, S [1 ]
机构
[1] Univ Kentucky, Dept Civil Engn, Lexington, KY 40506 USA
关键词
aquifer; parameter; neural networks; optimization;
D O I
10.1080/02630259808970234
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Computational tools such as genetic algorithms and neural networks are becoming increasingly popular in scientific applications involving mathematical modeling. These tools emulate natural biological processes in an attempt to build more robust and efficient mathematical models. The present study explores the applicability of genetic algorithms and neural networks for aquifer parameter estimation, in an optimization framework. Although optimization models based on genetic algorithms are more robust than conventional nonlinear programming techniques, they often necessitate many computationally expensive function evaluations. On the other hand, genetic algorithms can also tolerate approximate function evaluations. The present study employs artificial neural networks that provide quick but reasonably accurate function evaluation, in conjunction with genetic algorithms. Such an optimization framework makes the resulting calibration model highly robust and efficient. Applicability of the proposed model is demonstrated on a hypothetical aquifer using synthetic test data. Through an extensive sensitivity analysis, the present study reiterates that a low probability of mutation (0.02-0.03) and a moderately high probability of crossover (0.6-0.7) are essential for good convergence of a genetic optimization model.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 50 条
  • [1] Aquifer parameter estimation under transient and steady-state conditions using genetic algorithms
    Wang, MG
    Zheng, CM
    [J]. CALIBRATION AND RELIABILITY IN GROUNDWATER MODELLING, 1996, (237): : 21 - 30
  • [2] Genetic algorithms and aquifer parameter identification
    李竞生
    姚磊华
    李杨
    [J]. International Journal of Coal Science & Technology, 2003, (02) : 48 - 53
  • [3] Aerodynamic parameter estimation using genetic algorithms
    Shi, Yang
    Qian, Weiqi
    Wang, Qing
    He, Kaifeng
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 629 - +
  • [4] Using neural networks for estimation of aquifer dynamical behavior
    da Silva, IN
    Saggioro, NJ
    Cagnon, JA
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 203 - 207
  • [5] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Chang-Chiun Huang
    Tsann-Tay Tang
    [J]. The International Journal of Advanced Manufacturing Technology, 2006, 27 : 1113 - 1118
  • [6] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Huang, CC
    Tang, TT
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 27 (11-12): : 1113 - 1118
  • [7] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    [J]. Sadhana, 2000, 25 : 193 - 203
  • [8] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    [J]. MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [9] Parameter estimation using compensatory neural networks
    Sinha, M
    Kalra, PK
    Kumar, K
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 193 - 203
  • [10] Training feedforward neural networks using neural networks and genetic algorithms
    Tellez, P
    Tang, Y
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, PROCEEDINGS, 2004, : 308 - 311