Congruences for l-regular overpartitions into odd parts

被引:0
|
作者
Shivashankar, C. [1 ]
Gireesh, D. S. [1 ]
机构
[1] MS Ramaiah Univ Appl Sci, Dept Math, Bengaluru 560058, Karnataka, India
来源
关键词
Overpartitions; Congruences; Theta function; ARITHMETIC PROPERTIES; PARTITIONS; IDENTITIES; ANALOGS; NUMBER;
D O I
10.1007/s40590-022-00414-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study various arithmetic properties of the function (po) over bar (l)(n), which denotes the number of l-regular overpartitions of n into odd parts. We will prove several Ramanujan-like congruences and infinite families of congruences modulo 3 and 8 for <(po)over bar(3) and modulo 8 for <(po)over bar>(5). For example, we find that for all nonnegative integers alpha and n, <(po)over bar(3) (12n + 6) 0(mod 3), <(po)over bar(3)(12n + 10) 0 (mod 3), <(po)over bar(3)(72n + 60) 0(mod 3) and <(po)over bar>(5)(8 . 5(2 alpha+1)n + r(1) . 5(2 alpha)) 0(mod 8), where r(1) epsilon {11, 19}.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] SOME NEW INFINITE FAMILIES OF CONGRUENCES MODULO 3 FOR OVERPARTITIONS INTO ODD PARTS
    Xia, Ernest X. W.
    COLLOQUIUM MATHEMATICUM, 2016, 142 (02) : 255 - 266
  • [22] Congruences modulo 8 for (2, k)-regular overpartitions for odd k > 1
    Adiga, Chandrashekar
    Naika, M. S. Mahadeva
    Ranganatha, D.
    Shivashankar, C.
    ARABIAN JOURNAL OF MATHEMATICS, 2018, 7 (02) : 61 - 75
  • [23] Congruences for overpartitions with restricted odd differences
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2020, 53 (01): : 167 - 180
  • [24] Congruences for overpartitions with restricted odd differences
    M. S. Mahadeva Naika
    D. S. Gireesh
    Afrika Matematika, 2019, 30 : 1 - 21
  • [25] Congruences for overpartitions with restricted odd differences
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2020, 53 : 167 - 180
  • [26] On the number of overpartitions into odd parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2014, 325 : 32 - 37
  • [27] Arithmetic properties of l-regular partitions and l-regular bipartitions
    Shruthi, B. R. Srivatsa
    Kumar, B. R. Srivatsa
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3055 - 3064
  • [28] Ramanujan congruences for overpartitions with restricted odd differences
    Hanson, Michael
    Smith, Jeremiah
    RESEARCH IN NUMBER THEORY, 2023, 9 (01)
  • [29] Ramanujan congruences for overpartitions with restricted odd differences
    Michael Hanson
    Jeremiah Smith
    Research in Number Theory, 2023, 9
  • [30] CONGRUENCES FOR 5-REGULAR PARTITIONS WITH ODD PARTS OVERLINED
    Naika, M. S. Mahadeva
    Harishkumar, T.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3A): : 445 - 465