Ergodic and non-ergodic clustering of inertial particles

被引:39
|
作者
Gustavsson, K. [1 ]
Mehlig, B. [1 ]
机构
[1] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden
关键词
HEAVY-PARTICLES; TURBULENCE; FLOW;
D O I
10.1209/0295-5075/96/60012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the fractal dimension of clusters of inertial particles in random flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic "centrifuge effect". In the limit of St -> 8 and Ku -> 0 (so that Ku(2)St remains finite) it explains clustering in terms of ergodic "multiplicative amplification". In this limit, the theory is consistent with the asymptotic perturbation series in MEHLIG B. et al., Phys. Rev. Lett., 92 (2004) 250602. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for St similar to 1. The ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku similar to St similar to 1, ergodic multiplicative amplification makes a substantial contribution to clustering. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 50 条
  • [41] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [42] NON-ERGODIC DISSOCIATION OF THE ACETONE ENOL ION
    MCADOO, DJ
    HUDSON, CE
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1984, 59 (01): : 77 - 83
  • [43] A statistical evaluation of non-ergodic variogram estimators
    Curriero, FC
    Hohn, ME
    Liebhold, AM
    Lele, SR
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2002, 9 (01) : 89 - 110
  • [44] A statistical evaluation of non-ergodic variogram estimators
    Frank C. Curriero
    Michael E. Hohn
    Andrew M. Liebhold
    Subhash R. Lele
    Environmental and Ecological Statistics, 2002, 9 : 89 - 110
  • [45] Non-ergodic delocalization in the Rosenzweig–Porter model
    Per von Soosten
    Simone Warzel
    Letters in Mathematical Physics, 2019, 109 : 905 - 922
  • [46] Non-thermodynamic behavior for non-ergodic interactions
    Gaveau, B.
    Schulman, L. S.
    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES, 2011, 1411
  • [47] Collective topological active particles: Non-ergodic superdiffusion and ageing in complex environments
    Shi, Hong-Da
    Du, Lu-Chun
    Huang, Fei-Jie
    Guo, Wei
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [48] LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS
    Kotus, Janina
    Balderas, Marco Montes De Oca
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1609 - 1620
  • [49] STRICTLY NON-ERGODIC ACTIONS ON HOMOGENEOUS SPACES
    DANI, SG
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 633 - 639
  • [50] Multirelay Channel with Non-Ergodic Link Failures
    Simeone, Osvaldo
    Somekh, Oren
    Erkip, Elza
    Poor, H. Vincent
    Shamai , Shlomo
    ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 52 - +